1,324 research outputs found

    Repeatability of proton magnetic resonance spectroscopy of the brain at 7 T: effect of scan time on semi-localized by adiabatic selective refocusing and short-echo time stimulated echo acquisition mode scans and their comparison

    Get PDF
    Background: Proton magnetic resonance spectroscopy (MRS) provides a unique opportunity for in vivo measurements of the brain's metabolic profile. Two methods of mainstream data acquisition are compared at 7 T, which provides certain advantages as well as challenges. The two representative methods have seldom been compared in terms of measured metabolite concentrations and different scan times. The current study investigated proton MRS of the posterior cingulate cortex using a semi-localized by adiabatic selective refocusing (sLASER) sequence and a short echo time (TE) stimulated echo acquisition mode (sSTEAM) sequence, and it compared their reliability and repeatability at 7 T using a 32-channel head coil. Methods: Sixteen healthy subjects were prospectively enrolled and scanned twice with an off-bed interval between scans. The scan parameters for sLASER were a TR/TE of 6.5 s/32 ms and 32 and 48 averages (sLASER×32 and sLASER×48, respectively). The scan parameters for sSTEAM were a TR/TE of 4 s/5 ms and 32, 48, and 64 averages (sSTEAM4×32, sSTEAM4×48, and sSTEAM4×64, respectively) in addition to that with a TR/TE of 8 s/5 ms and 32 averages (sSTEAM8×32). Data were analyzed using LCModel. Metabolites quantified with Cramér-Rao lower bounds (CRLBs) >50% were classified as not detected, and metabolites quantified with mean or median CRLBs ≤20% were included for further analysis. The SNR, CRLBs, coefficient of variation (CV), and metabolite concentrations were statistically compared using the Shapiro-Wilk test, one-way ANOVA, or the Friedman test. Results: The sLASER spectra for N-acetylaspartate + N-acetylaspartylglutamate (tNAA) and glutamate (Glu) had a comparable or higher SNR than sSTEAM spectra. Ten metabolites had lower CRLBs than prefixed thresholds: aspartate (Asp), γ-aminobutyric acid (GABA), glutamine (Gln), Glu, glutathione (GSH), myo-inositol (Ins), taurine (Tau), the total amount of phosphocholine + glycerophosphocholine (tCho), creatine + phosphocreatine (tCr), and tNAA. Performance of the two sequences was satisfactory except for GABA, for which sLASER yielded higher CRLBs (≥18%) than sSTEAM. Some significant differences in CRLBs were noted, but they were ≤2% except for GABA and Gln. Signal averaging significantly lowered CRLBs for some metabolites but only by a small amount. Measurement repeatability as indicated by median CVs was ≤10% for Gln, Glu, Ins, tCho, tCr, and tNAA in all scans, and that for Asp, GABA, GSH, and Tau was ≥10% under some scanning conditions. The CV for GABA according to sLASER was significantly higher than that according to sSTEAM, whereas the CV for Ins was higher according to sSTEAM. An increase in signal averaging contribute little to lower CVs except for Ins. Conclusions: Both sequences quantified brain metabolites with a high degree of precision and repeatability. They are comparable except for GABA, for which sSTEAM would be a better choice

    Internet banking acceptance model: Cross-market examination

    Get PDF
    This article proposes a revised technology acceptance model to measure consumers’ acceptance of Internet banking, the Internet Banking Acceptance Model (IBAM). Data was collected from 618 university students in the United Kingdom and Saudi Arabia. The results suggest the importance of attitude, such that attitude and behavioral intentions emerge as a single factor, denoted as “attitudinal intentions” (AI). Structural equation modeling confirms the fit of the model, in which perceived usefulness and trust fully mediate the impact of subjective norms and perceived manageability on AI. The invariance analysis demonstrates the psychometric equivalence of the IBAM measurements between the two country groups. At the structural level, the influence of trust and system usefulness on AI vary between the two countries, emphasizing the potential role of cultures in IS adoption. The IBAM is robust and parsimonious, explaining over 80% of AI

    The Efficacy of Postoperative Prophylactic Antibiotics in Orthognathic Surgery: A Prospective Study in Le Fort I Osteotomy and Bilateral Intraoral Vertical Ramus Osteotomy

    Get PDF
    PURPOSE: This study examined the efficacy of the postoperative prophylactic antibiotics used in orthognathic surgery. the prevalence of surgical site infections (SSIs) was determined according to the use of postoperative prophylactic antibiotics. PATIENTS and METHODS: Fifty-six patients were divided into 2 groups. Each patient intravenously received 1.0 g of a third-generation cephalosporin (Cefpiramide) 30 minutes before surgery. Among them, 28 patients in the control group received 1.0 g Cefpiramide twice daily until the third day after surgery. the postoperative wounds were examined regularly for the presence of infectious signs. RESULTS: There was no significant difference in the incidence of postoperative wound infections between patients who had received postoperative prophylactic antibiotic administration and those who had not (p = 0.639). CONCLUSION: Prolonged prophylactic antibiotic use after orthognathic surgery may not be necessary, provided that there are no other significant factors for wound infections.ope

    Complexity

    Get PDF
    This is a contribution to the encyclopedia of systems biology on complexity

    In Vitro and in Vivo Anti-Hyperglycemic Effects of Omija (Schizandra chinensis) Fruit

    Get PDF
    The entrocytes of the small intestine can only absorb monosaccharides such as glucose and fructose from our diet. The intestinal absorption of dietary carbohydrates such as maltose and sucrose is carried out by a group of α-glucosidases. Inhibition of these enzymes can significantly decrease the postprandial increase of blood glucose level after a mixed carbohydrate diet. Therefore, the inhibitory activity of Omija (Schizandra chinensis) extract against rat intestinal α-glucosidase and porcine pancreatic α-amylase were investigated in vitro and in vivo. The in vitro inhibitory activities of water extract of Omija pulp/skin (OPE) on α-glucosidase and α-amylase were potent when compared to Omija seeds extract (OSE). The postprandial blood glucose lowering effect of Omija extracts was compared to a known type 2 diabetes drug (Acarbose), a strong α-glucosidase inhibitor in the Sprague-Dawley (SD) rat model. In rats fed on sucrose, OPE significantly reduced the blood glucose increase after sucrose loading. Furthermore, the oxygen radical absorbance capacity (ORAC) of OSE and OPE was evaluated. OPE had higher peroxyl radical absorbing activity than OSE. These results suggest that Omija, which has high ORAC value with α-glucosidase inhibitory activity and blood glucose lowering effect, could be physiologically useful for treatment of diabetes, although clinical trials are needed

    A structured overview of simultaneous component based data integration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Data integration is currently one of the main challenges in the biomedical sciences. Often different pieces of information are gathered on the same set of entities (e.g., tissues, culture samples, biomolecules) with the different pieces stemming, for example, from different measurement techniques. This implies that more and more data appear that consist of two or more data arrays that have a shared mode. An integrative analysis of such coupled data should be based on a simultaneous analysis of all data arrays. In this respect, the family of simultaneous component methods (e.g., SUM-PCA, unrestricted PCovR, MFA, STATIS, and SCA-P) is a natural choice. Yet, different simultaneous component methods may lead to quite different results.</p> <p>Results</p> <p>We offer a structured overview of simultaneous component methods that frames them in a principal components setting such that both the common core of the methods and the specific elements with regard to which they differ are highlighted. An overview of principles is given that may guide the data analyst in choosing an appropriate simultaneous component method. Several theoretical and practical issues are illustrated with an empirical example on metabolomics data for <it>Escherichia coli </it>as obtained with different analytical chemical measurement methods.</p> <p>Conclusion</p> <p>Of the aspects in which the simultaneous component methods differ, pre-processing and weighting are consequential. Especially, the type of weighting of the different matrices is essential for simultaneous component analysis. These types are shown to be linked to different specifications of the idea of a fair integration of the different coupled arrays.</p

    Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM

    Get PDF
    Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Forster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research

    Multivariate GR&R through factor analysis

    Get PDF
    Several measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation.publishe

    Flexibility of a Eukaryotic Lipidome – Insights from Yeast Lipidomics

    Get PDF
    Mass spectrometry-based shotgun lipidomics has enabled the quantitative and comprehensive assessment of cellular lipid compositions. The yeast Saccharomyces cerevisiae has proven to be a particularly valuable experimental system for studying lipid-related cellular processes. Here, by applying our shotgun lipidomics platform, we investigated the influence of a variety of commonly used growth conditions on the yeast lipidome, including glycerophospholipids, triglycerides, ergosterol as well as complex sphingolipids. This extensive dataset allowed for a quantitative description of the intrinsic flexibility of a eukaryotic lipidome, thereby providing new insights into the adjustments of lipid biosynthetic pathways. In addition, we established a baseline for future lipidomic experiments in yeast. Finally, flexibility of lipidomic features is proposed as a new parameter for the description of the physiological state of an organism
    corecore