40 research outputs found

    A multisite study of a breast density deep learning model for full-field digital mammography and synthetic mammography

    Get PDF
    PURPOSE: To develop a Breast Imaging Reporting and Data System (BI-RADS) breast density deep learning (DL) model in a multisite setting for synthetic two-dimensional mammographic (SM) images derived from digital breast tomosynthesis examinations by using full-field digital mammographic (FFDM) images and limited SM data. MATERIALS AND METHODS: A DL model was trained to predict BI-RADS breast density by using FFDM images acquired from 2008 to 2017 (site 1: 57 492 patients, 187 627 examinations, 750 752 images) for this retrospective study. The FFDM model was evaluated by using SM datasets from two institutions (site 1: 3842 patients, 3866 examinations, 14 472 images, acquired from 2016 to 2017; site 2: 7557 patients, 16 283 examinations, 63 973 images, 2015 to 2019). Each of the three datasets were then split into training, validation, and test. Adaptation methods were investigated to improve performance on the SM datasets, and the effect of dataset size on each adaptation method was considered. Statistical significance was assessed by using CIs, which were estimated by bootstrapping. RESULTS: Without adaptation, the model demonstrated substantial agreement with the original reporting radiologists for all three datasets (site 1 FFDM: linearly weighted Cohen κ [κ CONCLUSION: A BI-RADS breast density DL model demonstrated strong performance on FFDM and SM images from two institutions without training on SM images and improved by using few SM images

    Why do avian responses to change in Arctic green-up vary?

    Get PDF
    Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate. climate change, migration, NDVI, nest initiation, phenology, shorebirdspublishedVersio

    A circumpolar study unveils a positive non-linear effect oftemperature on arctic arthropod availability that may reduce therisk of warming-induced trophic mismatch for breeding shorebirds

    Get PDF
    Seasonally abundant arthropods are a crucial food source for many migratorybirds that breed in the Arctic. In cold environments, the growth and emergence ofarthropods are particularly tied to temperature. Thus, the phenology of arthropodsis anticipated to undergo a rapid change in response to a warming climate, potentiallyleading to a trophic mismatch between migratory insectivorous birds and their prey.Using data from 19 sites spanning a wide temperature gradient from the Subarcticto the High Arctic, we investigated the effects of temperature on the phenology andbiomass of arthropods available to shorebirds during their short breeding seasonat high latitudes. We hypothesized that prolonged exposure to warmer summertemperatures would generate earlier peaks in arthropod biomass, as well as higherpeak and seasonal biomass. Across the temperature gradient encompassed by ourstudy sites (>10°C in average summer temperatures), we found a 3-day shift inaverage peak date for every increment of 80 cumulative thawing degree-days.Interestingly, we found a linear relationship between temperature and arthropodbiomass only below temperature thresholds. Higher temperatures were associatedwith higher peak and seasonal biomass below 106 and 177 cumulative thawingdegree-days, respectively, between June 5 and July 15. Beyond these thresholds,no relationship was observed between temperature and arthropod biomass. Ourresults suggest that prolonged exposure to elevated temperatures can positivelyinfluence prey availability for some arctic birds. This positive effect could, in part,stem from changes in arthropod assemblages and may reduce the risk of trophicmismatch. Sarctic arthropods, arctic breeding shorebirds, climate warming, insectivorous birds,invertebrate biomass, phenology, trophic mismatcpublishedVersio

    Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease

    Get PDF
    Neurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker

    Molecular Imaging of Pulmonary Tuberculosis in an Ex-Vivo Mouse Model Using Spectral Photon-Counting Computed Tomography and Micro-CT

    Get PDF
    Assessment of disease burden and drug efficacy is achieved preclinically using high resolution micro computed tomography (CT). However, micro-CT is not applicable to clinical human imaging due to operating at high dose. In addition, the technology differences between micro-CT and standard clinical CT prevent direct translation of preclinical applications. The current proof-of-concept study presents spectral photon-counting CT as a clinically translatable, molecular imaging tool by assessing contrast uptake in an ex-vivo mouse model of pulmonary tuberculosis (TB). Iodine, a common contrast used in clinical CT imaging, was introduced into a murine model of TB. The excised mouse lungs were imaged using a standard micro-CT subsystem (SuperArgus) and the contrast enhanced TB lesions quantified. The same lungs were imaged using a spectral photoncounting CT system (MARS small-bore scanner). Iodine and soft tissues (water and lipid) were materially separated, and iodine uptake quantified. The volume of the TB infection quantified by spectral CT and micro-CT was found to be 2.96 mm(3) and 2.83 mm(3), respectively. This proof-of-concept study showed that spectral photon-counting CT could be used as a predictive preclinical imaging tool for the purpose of facilitating drug discovery and development. Also, as this imaging modality is available for human trials, all applications are translatable to human imaging. In conclusion, spectral photon-counting CT could accelerate a deeper understanding of infectious lung diseases using targeted pharmaceuticals and intrinsic markers, and ultimately improve the efficacy of therapies by measuring drug delivery and response to treatment in animal models and later in humans

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Late effects in survivors of chronic myeloid leukemia treated with hematopoietic cell transplantation: Results from the Bone Marrow Transplant Survivor Study

    No full text
    The purpose of this study was to analyze medical late effects among patients with chronic myeloid leukemia (CML) treated with hematopoietic cell transplantation (HCT). Subjects included 248 CML survivors who received an HC transplant (related donors [RDs], n = 150; unrelated donors [URDs], n = 70; or autologous, n = 28) and had survived at least 2 years, and a comparison group 317 siblings. Subjects completed a 238-item survey on medical late effects. Compared with siblings, survivors were at a higher risk of developing ocular, oral health, endocrine, gastrointestinal, musculoskeletal, neurosensory, and neuromotor impairments. Multivariate analysis limited to RD and URD recipients found that chronic graft-versus-host disease (cGVHD) was associated with a higher risk of hypothyroidism, osteoporosis, cardiopulmonary, neurosensory, and neuromotor impairments. Overall health was reported as excellent, very good, or good in 78% of subjects, although those with cGVHD were more likely to report poor overall health. URD survivors were more likely to report a need for assistance with routine activities and that their current health prevented work or school attendance. This study demonstrates that HCT survivors, regardless or donor type, have a high prevalence of long-term health-related complications. However, adverse medical late effects with significant morbidity were uncommon. Chronic GVHD is the most important predictor of adverse medical late effects and poor overall health. © 2004 by The American Society of Hematology
    corecore