11 research outputs found

    Pathogenicity of Pythium species to maize

    Get PDF
    AbstractPythium isolates from diseased and dead bait plants of maize and cress grown in compost or various soils (maize fields, parkland under deciduous trees, grassland) were characterised and tested for pathogenicity to maize (Zea mays L.). In pot tests performed under controlled conditions, pathogenicity of the isolates to maize was apparent by reduction of root and shoot growth, whereas damping-off of maize seedlings was less frequent. Contrarily, pea seedlings were killed by pathogenic Pythium isolates. Pythium isolates from diseased maize seedlings and pathogenic strains from other gramineous plants (P. phragmitis, P. aff.phragmitis, P. catenulatum) were not necessarily more virulent to maize compared to isolates originating from dicotyledonous plants (cress). The most virulent isolates originated from compost and caused a reduction of maize shoot growth of up to 60%. Phylogenetic analysis revealed that they were very closely related to P. ultimum var. ultimum and P. arrhenomanes, respectively. Isolates originating from maize fields, grassland and parkland under deciduous trees, a reference culture of P. arrhenomanes and strains of P. phragmitis, P. aff. phragmitis and P. catenulatum with known pathogenicity on reed were non-pathogenic on maize. Isolates from compost, and from maize fields generally had a higher temperature optimum for mycelial growth (30 °C) and a faster growth rate (1.5–2.0 mm h−1) compared to the isolates from parkland under deciduous trees and grassland soil (20–25 °C, ~1.0 mm h−1), respectively. This study indicates a potential impact of pathogenic Pythium on maize plants even in the absence of visible symptoms

    Toxicity Going Nano: Ionic Versus Engineered Cu Nanoparticles Impacts on the Physiological Fitness of the Model Diatom Phaeodactylum tricornutum

    Get PDF
    Increasing input of Metal Engineered Nano Particles (MeENPs) in marine ecosystems has raised concerns about their potential toxicity on phytoplankton. Given the lack of knowledge on MeENPs impact on these important primary producers, the effects of Copper Oxide (CuO) ENPs on growth, physiology, pigment profiles, fatty acid (FA) metabolism, and oxidative stress were investigated in the model diatom Pheodactylum tricornutum, to provide suitable biomarkers of CuO ENP exposure versus its ionic counterpart. Diatom growth was inhibited by CuO ENPs but not Ionic Cu, suggesting CuO ENP cytotoxicity. Pulse Modulated Amplitude (PAM) phenotyping evidenced a decrease in the electron transport energy flux, pointing to a reduction in chemical energy generation following CuO ENPs exposure, as well as an increase in the content of the non-functional Cu-substituted chlorophyll a (CuChl a). A significant decrease in eicosapentaenoic acid (C20:5) associated with a significant rise in thylakoid membranes FAs reflected the activation of counteractive measures to photosynthetic impairment. Significant increase in the omega 6/omega 3 ratio, underline expectable negative repercussions to marine food webs. Increased thiobarbituric acid reactive substances reflected heightened oxidative stress by CuO ENP. Enhanced Glutathione Reductase and Ascorbate Peroxidase activity were also more evident for CuO ENPs than ionic Cu. Overall, observed molecular changes highlighted a battery of possible suitable biomarkers to efficiently determine the harmful effects of CuO ENPs. The results suggest that the occurrence and contamination of these new forms of metal contaminants can impose added stress to the marine diatom community, which could have significant impacts on marine ecosystems, namely through a reduction of the primary productivity, oxygen production and omega 6 production, all essential to sustain heterotrophic marine life

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    Highly Reproducible, Bio-Based Slab Photonic Crystals Grown by Diatoms

    No full text
    9 pags., 5 figs.Slab photonic crystals (PhCs) are photonic structures used in many modern optical technologies. Fabrication of these components is costly and usually involves eco-unfriendly methods, requiring modern nanofabrication techniques and cleanroom facilities. This work describes that diatom microalgae evolved elaborate and highly reproducible slab PhCs in the girdle, a part of their silicon dioxide exoskeletons. Under natural conditions in water, the girdle of the centric diatom Coscinodiscus granii shows a well-defined optical pseudogap for modes in the near-infrared (NIR). This pseudogap shows dispersion toward the visible spectral range when light is incident at larger angles, eventually facilitating in-plane propagation for modes in the green spectral range. The optical features can be modulated with refractive index contrast. The unit cell period, a critical factor controlling the pseudogap, is highly preserved within individuals of a long-term cultivated inbred line and between at least four different C. granii cell culture strains tested in this study. Other diatoms present similar unit cell morphologies with various periods. Diatoms thereby offer a wide range of PhC structures, reproducible and equipped with well-defined properties, possibly covering the entire UV-vis-NIR spectral range. Diatoms therefore offer an alternative as cost-effective and environmentally friendly produced photonic materials.J.W.G. acknowledges support and co-funding of the NanoTRAINforGrowth II program (project 2000032) by the European Commission through the Horizon 2020 Marie Sklodowska-Curie COFUND Programme (2015), and by the International Iberian Nanotechnology Laboratory. W.P.W. and M.L.G. acknowledge the project POCI-01-0145-FEDER-031739 co-funded by Fundação para a Ciência e a Tecnologia and COMPETE2020.Peer reviewe

    Natural slab photonic crystals in centric diatoms

    No full text
    15 pags., 5 figs., 1 tab.Natural photonic crystals can serve in mating strategies or as aposematism for animals, but they also exist in some photosynthetic organisms, with potential implications for their light regulation. Some of the most abundant microalgae, named diatoms, evolved a silicate exoskeleton, the frustule, perforated with ordered pores resembling photonic crystals. Here we present the first combined experimental and theoretical characterization of the photonic properties of the diatom girdle, i.e. one of two structures assembling the frustule. We show that the girdle of the centric diatom Coscinodiscus granii is a well defined slab photonic crystal, causing, under more natural conditions when immersed in water, a pseudogap for modes in the near infrared. The pseudogap disperses towards the visible spectral range when light incides at larger angles. The girdle crystal structure facilitates in-plane propagation for modes in the green spectral range. We demonstrate that the period of the unit cell is one of the most critical factors for causing these properties. The period is shown to be similar within individuals of a long-term cultivated inbred line and between 4 different C. granii cell culture strains. In contrast, the pore diameter had negligible effects upon the photonic properties. We hence propose that critical parameters defining the photonic response of the girdle are highly preserved. Other centric diatom species, i.e. Thalasiosira pseudonana, C. radiatus and C. wailesii, present similar unit cell morphologies with various periods in their girdles. We speculate that evolution has preserved the photonic crystal character of the centric girdle, indicating an important biological functionality for this clade of diatoms.J.W.G acknowledges support and co-funding of the NanoTRAINforGrowth II program (project 2000032) by the European Commission through the Horizon 2020 Marie Sklodowska-Curie COFUND Programme (2015), and by the International Iberian Nanotechnology Laboratory. W.W and M.L.G would like to acknowledge the project POCI-01-0145-FEDER-031739 co-funded by Fundação para a Ciência e a Tecnologia and COMPETE2020.Peer reviewe

    Measuring Photonics in Photosynthesis: Combined Micro-Fourier Image Spectroscopy and Pulse Amplitude Modulated Chlorophyll Fluorimetry at the Micrometre-Scale

    No full text
    Natural photonic structures are common across the biological kingdoms, serving a diversity of functionalities. The study of implications of photonic structures in plants and other phototrophic organisms is still hampered by missing methodologies for determining in situ photonic properties, particularly in the context of constantly adapting photosynthetic systems controlled by acclimation mechanisms on the cellular scale. We describe an innovative approach to determining spatial and spectral photonic properties and photosynthesis activity, employing micro-Fourier Image Spectroscopy and Pulse Amplitude Modulated Chlorophyll Fluorimetry in a combined microscope setup. Using two examples from the photosynthetic realm, the dynamic Bragg-stack-like thylakoid structures of Begonia sp. and complex 2.5 D photonic crystal slabs from the diatom Coscinodiscus granii, we demonstrate how the setup can be used for measuring self-adapting photonic-photosynthetic systems and photonic properties on single-cell scales. We suggest that the setup is well-suited for the determination of photonic&ndash;photosynthetic systems in a diversity of organisms, facilitating the cellular, temporal, spectral and angular resolution of both light distribution and combined chlorophyll fluorescence determination. As the catalogue of photonic structure from photosynthetic organisms is rich and diverse in examples, a deepened study could inspire the design of novel optical- and light-harvesting technologies

    Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.

    Get PDF
    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function
    corecore