167 research outputs found
Electrospinning research and products: The road and the way forward
Electrospinning is one of the most accessed nanofabrication techniques during the last three decades, attributed to its viability for the mass production of continuous nanofibers with superior properties from a variety of polymers and polymeric composites. Large investments from various sectors have pushed the development of electrospinning industrial setups capable of producing nanofibers in millions of kilograms per year for several practical applications. Herein, the lessons learned over three decades of research, innovations, and designs on electrospinning products are discussed in detail. The historical developments, engineering, and future opportunities of electrospun nanofibers (ESNFs) are critically addressed. The laboratory-to-industry transition gaps for electrospinning technology and ESNFs products, the potential of electrospun nanostructured materials for various applications, and academia-industry comparison are comprehensively analyzed. The current challenges and future trends regarding the use of this technology to fabricate promising nano/macro-products are critically demonstrated. We show that future research on electrospinning should focus on theoretical and technological developments to achieve better maneuverability during large-scale fiber formation, redesigning the electrospinning process around decarbonizing the materials processing to align with the sustainability agenda and the integration of electrospinning technology with the tools of intelligent manufacturing and IR 4.0
NeuroBench:Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking
The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and strengths of neuromorphic methods compared to traditional deep-learning-based methods. This paper presents a collaborative effort, bringing together members from academia and the industry, to define benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are to be a collaborative, fair, and representative benchmark suite developed by the community, for the community. In this paper, we discuss the challenges associated with benchmarking neuromorphic solutions, and outline the key features of NeuroBench. We believe that NeuroBench will be a significant step towards defining standards that can unify the goals of neuromorphic computing and drive its technological progress. Please visit neurobench.ai for the latest updates on the benchmark tasks and metrics
NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking
The field of neuromorphic computing holds great promise in terms of advancing
computing efficiency and capabilities by following brain-inspired principles.
However, the rich diversity of techniques employed in neuromorphic research has
resulted in a lack of clear standards for benchmarking, hindering effective
evaluation of the advantages and strengths of neuromorphic methods compared to
traditional deep-learning-based methods. This paper presents a collaborative
effort, bringing together members from academia and the industry, to define
benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are
to be a collaborative, fair, and representative benchmark suite developed by
the community, for the community. In this paper, we discuss the challenges
associated with benchmarking neuromorphic solutions, and outline the key
features of NeuroBench. We believe that NeuroBench will be a significant step
towards defining standards that can unify the goals of neuromorphic computing
and drive its technological progress. Please visit neurobench.ai for the latest
updates on the benchmark tasks and metrics
NeuroBench:A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems
Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological advancements, compare performance with conventional methods, and identify promising future research directions. Prior neuromorphic computing benchmark efforts have not seen widespread adoption due to a lack of inclusive, actionable, and iterative benchmark design and guidelines. To address these shortcomings, we present NeuroBench: a benchmark framework for neuromorphic computing algorithms and systems. NeuroBench is a collaboratively-designed effort from an open community of nearly 100 co-authors across over 50 institutions in industry and academia, aiming to provide a representative structure for standardizing the evaluation of neuromorphic approaches. The NeuroBench framework introduces a common set of tools and systematic methodology for inclusive benchmark measurement, delivering an objective reference framework for quantifying neuromorphic approaches in both hardware-independent (algorithm track) and hardware-dependent (system track) settings. In this article, we present initial performance baselines across various model architectures on the algorithm track and outline the system track benchmark tasks and guidelines. NeuroBench is intended to continually expand its benchmarks and features to foster and track the progress made by the research community
Cellular therapies for treating pain associated with spinal cord injury
Spinal cord injury leads to immense disability and loss of quality of life in human with no satisfactory clinical cure. Cell-based or cell-related therapies have emerged as promising therapeutic potentials both in regeneration of spinal cord and mitigation of neuropathic pain due to spinal cord injury. This article reviews the various options and their latest developments with an update on their therapeutic potentials and clinical trialing
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
- …