24 research outputs found
Sediment dynamics in the lower Mekong River : transition from tidal river to estuary
Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 6363–6383, doi:10.1002/2015JC010754.A better understanding of flow and sediment dynamics in the lowermost portions of large-tropical rivers is essential to constraining estimates of worldwide sediment delivery to the ocean. Flow velocity, salinity, and suspended-sediment concentration were measured for 25 h at three cross sections in the tidal Song Hau distributary of the Mekong River, Vietnam. Two campaigns took place during comparatively high-seasonal and low-seasonal discharge, and estuarine conditions varied dramatically between them. The system transitioned from a tidal river with ephemeral presence of a salt wedge during high flow to a partially mixed estuary during low flow. The changing freshwater input, sediment sources, and estuarine characteristics resulted in seaward sediment export during high flow and landward import during low flow. The Dinh An channel of the Song Hau distributary exported sediment to the coast at a rate of about 1 t s−1 during high flow and imported sediment in a spatially varying manner at approximately 0.3 t s−1 during low flow. Scaling these values results in a yearly Mekong sediment discharge estimate about 65% smaller than a generally accepted estimate of 110 Mt yr−1, although the limited temporal and spatial nature of this study implies a relatively high degree of uncertainty for the new estimate. Fluvial advection of sediment was primarily responsible for the high-flow sediment export. Exchange-flow and tidal processes, including local resuspension, were principally responsible for the low-flow import. The resulting bed-sediment grain size was coarser and more variable during high flow and finer during low, and the residual flow patterns support the maintenance of mid-channel islands.Office of Naval Research Grant Numbers: N00014-12-1-0181 , N00014-13-1-0127 , N00014-13-1-0781, and National Defense Science and Engineering2016-03-2
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society
Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20[superscript h]10[superscript m]54.71[superscript s] + 33°33[superscript ′]25.29[superscript ′′], and the other (B) is 7.45° in diameter and centered on 8[superscript h]35[superscript m]20.61[superscript s] - 46°49[superscript ′]25.151[superscript ′′]. We explored the frequency range of 50–1500 Hz and frequency derivative from 0 to -5 × 10[superscript -9] Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h[subscript 0] of 6.3 × 10[superscript -25], while at the high end of our frequency range we achieve a worst-case upper limit of 3.4 × 10[superscript -24] for all polarizations and sky locations.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan Foundatio
First low frequency all-sky search for continuous gravitational wave signals
In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between −1.0×10−10 and +1.5×10−11 Hz/s, and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 10−24 and 2×10−23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ∼2 with respect to the results of previous all-sky searches at frequencies below 80 H
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20[superscript h]10[superscript m]54.71[superscript s] + 33°33[superscript ′]25.29[superscript ′′], and the other (B) is 7.45° in diameter and centered on 8[superscript h]35[superscript m]20.61[superscript s] - 46°49[superscript ′]25.151[superscript ′′]. We explored the frequency range of 50–1500 Hz and frequency derivative from 0 to -5 × 10[superscript -9] Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h[subscript 0] of 6.3 × 10[superscript -25], while at the high end of our frequency range we achieve a worst-case upper limit of 3.4 × 10[superscript -24] for all polarizations and sky locations.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan Foundatio
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10–500 s in a frequency band of 40–1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10[superscript -5] and 9.4×10[superscript -4] Mpc[superscript -3] yr[superscript -1] at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.Carnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan FoundationNational Science Foundation (U.S.
Properties of the Binary Black Hole Merger GW150914
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36+5−4M⊙ and 29+4−4M⊙; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410+160−180 Mpc, corresponding to a redshift 0.09+0.03−0.04 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2, primarily in the southern hemisphere. The binary merges into a black hole of mass 62+4−4M⊙ and spin 0.67+0.05−0.07. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime
Sediment dynamics and deposits along the fluvial–marine transition: Tidal river to mangrove coast
Thesis (Ph.D.)--University of Washington, 2017-02Rivers supply the vast majority of sediment that reaches the global ocean. As many rivers approach the sea, they experience tidal influence in the absence of salinity, along a reach known as the tidal river. As a result, a significant fraction of the sediment discharged by rivers around the world passes through a tidal river before entering the ocean. Within the tropics, these tidal rivers also supply sediment to coastal mangrove forests near the river mouths. Although common, the deposits and dynamics associated with tidal rivers and the coastal mangrove forests they nourish remain poorly understood. Processes acting within tidal-river environments, as well as between tidal rivers and adjacent mangrove forests, are governed by a combination of fluvial and tidal processes, which are a focus of this work. The Amazon River is the largest fluvial source of freshwater and sediment to the global ocean and has the longest tidally-influenced reach in the world. Two major rivers, the Tapajós and Xingu, enter the Amazon along its tidal reach. However, unlike most fluvial confluences, these are not one-way conduits through which water and sediment flow downstream toward the sea. The drowned river valleys (rias) at the confluences of the Tapajós and Xingu with the Amazon River experience water-level fluctuations associated not only with the seasonal rise and fall of the river network, but also with semidiurnal tides that propagate as far as 800 km up the Amazon River. Superimposed seasonal and tidal forcing, distinct sediment and temperature signatures of Amazon and tributary waters, and antecedent geomorphology combine to create mainstem–tributary confluences that act as sediment traps rather than sources of sediment. Hydrodynamic measurements are combined with data from sediment cores to determine the distribution of tributary- and Amazon-derived sediment within the ria basins, characterize the sediment-transport mechanisms within the confluence areas, and estimate rates of sediment accumulation within both rias. The Tapajós and Xingu ria basins trap the majority of the sediment carried by the tributaries themselves in addition to ~20 Mt y-1 of sediment sourced from the Amazon River. These findings have implications for the interpretation of stratigraphy associated with incised-valley systems, such as those that dominated the transfer of sediment to the oceans during low-stands in sea level. The estimates of water and sediment discharged by the Amazon River are based on data from the lowermost non-tidal gauging station at Óbidos, ~800 km upstream of the Atlantic Ocean. Depositional environments along the lengthy tidal river downstream of Óbidos have been proposed as important sinks for up to a third of the reported sediment discharge from the Amazon River. However, the morphology and dynamics of the intertidal floodplain have yet to be described. River-bank surveys in five areas along the Amazon tidal river reveal a distinct evolution in bank morphology between the upper, central, and lower reaches of the tidal river. The upper tidal-river floodplain is defined by prominent natural levees that strongly control the transfer of water and sediment between the mainstem Amazon River and its floodplain. Increased tidal influence in the central tidal river suppresses levee development, and tidal currents increase sediment transport into the distal parts of the floodplain. The floodplain morphology in the lower tidal river closely resembles marine intertidal environments (e.g., mud flats, salt marshes), with dendritic tidal channels incising elevated vegetated flats. Theory, morphology, and geochronology suggest that the dynamics of sediment delivery to the intertidal floodplain of the Amazon tidal river vary along its length due to the relative dominance of fluvial and tidal influence. The interplay between fluvial and marine influence is similarly felt in coastal mangrove forests that are nourished by tidal rivers. Mangrove forests are an important means of coastal protection along many shorelines in the tropics, and are often associated with large rivers there. The mangrove forest at the seaward end of Cù Lao Dung, an island in the Mekong Delta, includes areas with progradation rates of 10s of meters per year, and areas that have experienced little to no progradation in recent decades. The physical proximity (<12 km) of these two environments allows detailed hydro- and sediment-dynamic measurements to be related directly to morphologic change and century-scale stratigraphy. Contrary to conventional understanding, the region of mangrove forest prograding most rapidly is subject to the greatest wave attack, while progradation is slowest in the most quiescent area. Limited progradation here is the product of a reduction in the supply of sediment to certain parts of the mangrove forest due to estuarine dynamics operating on spring–neap timescales. Measurements of sediment flux show transport into the rapidly prograding part of the forest, and transport out of the area with minimal progradation. Century-scale rates of sediment accumulation determined using Pb-210 geochronology are consistent with in-situ dynamical measurements and geomorphic evolution of the mangrove forest. Where progradation is most rapid, sediment accumulation rates (3–5.1 cm y-1) exceed the rate of local sea-level rise (~1.5 cm y-1). In contrast, sediment-accumulation rates in the area of minimal progradation (0.8–2.8 cm y-1) barely keep pace with local sea-level rise, if at all. Physical stratification is well preserved in cores from areas of rapid progradation, consistent with energetic transport processes and an ample sediment supply. Greater impact from bioturbation and episodic sediment delivery produce more chaotic bedding where progradation is less rapid. The presence of a supply-limited mangrove forest adjacent to a major sediment source highlights the complexity of sediment-supply pathways in coastal mangrove environments