101 research outputs found

    Functional MRI To Evaluate “Sense of Self” following Perforator Flap Breast Reconstruction

    Get PDF
    Background: Breast reconstruction is associated with high levels of patient satisfaction. Previous patient satisfaction studies have been subjective. This study utilizes functional magnetic resonance imaging (fMRI) to objectively evaluate “sense of self” following deep inferior epigastric perforator (DIEP) flap breast reconstruction in an attempt to better understand patient perception. Methods: Prospective fMRI analysis was performed on four patients before and after delayed unilateral DIEP flap breast reconstruction, and on four patients after immediate unilateral DIEP flap breast reconstruction. Patients were randomly cued to palpate their natural breast, mastectomy site or breast reconstruction, and external silicone models. Three regions of interest (ROIs) associated with self-recognition were examined using a general linear model, and compared using a fixed effects and random effects ANOVA, respectively. Results: In the delayed reconstruction group, activation of the ROIs was significantly lower at the mastectomy site compared to the natural breast (p<0.01). Ten months following reconstruction, activation of the ROIs in the reconstructed breast was not significantly different from that observed with natural breast palpation. In the immediate reconstruction group, palpation of the reconstructed breast was also similar to the natural breast. This activity was greater than that observed during palpation of external artificial models (p<0.01). Conclusions: Similar activation patterns were observed during palpation of the reconstructed and natural breasts as compared to the non-reconstructed mastectomy site and artificial models. The cognitive process represented by this pattern may be a mechanism by which breast reconstruction improves self-perception, and thus patient satisfaction following mastectomy

    Predicting COVID-19 infection risk in people who are immunocompromised by antibody testing.

    Get PDF
    People with blood cancers have an increased risk of severe COVID-19 disease despite booster vaccine doses.1 This group, like other disease groups at increased risk of severe COVID-19, includes individuals with highly heterogeneous immune responses to vaccination.2 Although vaccine response studies and population studies identify similar diseases and treatments associated with increased risk of severe COVID-19, a direct correlation between antibody levels after vaccination and infection risk has been difficult to define. Identification of a laboratory correlate of infection risk would allow doctors and policy makers to target additional COVID-19 treatment or prophylactic efforts to people who are most in need

    The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

    Get PDF
    We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013-14 using two detector arrays at 149 GHz, from 548 deg2^2 of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the LCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. Adding the new data to planck temperature data tightens the limits on damping tail parameters, for example reducing the joint uncertainty on the number of neutrino species and the primordial helium fraction by 20%.Comment: 23 pages, 25 figure

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    The Atacama Cosmology Telescope: CMB Polarization at 200<<9000200<\ell<9000

    Get PDF
    We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of 1.31.3'. The map noise levels in the four regions are between 11 and 17 μ\muK-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range 200<<3000200<\ell<3000, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at <9000\ell<9000, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than 2.42.4 μ\muK2^2 at =3000\ell = 3000 at 95\% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7\% polarization with an angle of 150.7±0.6150.7^\circ \pm 0.6^\circ when smoothed with a 55' Gaussian beam.Comment: 16 pages, 15 figures, 5 table

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore