587 research outputs found

    Disruptive mixed in vitro-in silico approach for protein engineering and screening

    Get PDF
    We present a strategy that combines wet-lab experimentation and computational protein design for engineering polypeptide chains. The protein sequences were numerically coded and then processed using Fourier Transform (FT). Fourier coefficients were used to calculate the energy spectra called protein spectrum . We use the protein spectrum to model the biological activity/fitness of protein from sequence data. We assume that the protein fitness (catalytic efficacy, thermostabilty, binding affinity, aggregation, stability…) is not purely local, but globally distributed over the linear sequence of the protein. Our patented method does not require any protein 3D structure information and find patterns that correlate with changes in protein activity (or fitness) upon amino acids residue substitutions. A minimal wet lab data sampled from mutation libraries (single or multiple points mutations) were used as learning data sets in heuristic approaches that were applied to build predictive models. We show the performance of the approach on designed libraries for 3 examples (enantioselectivity, thermostability and binding affinity) and discuss how our approach can tackle epistatic phenomena. We can screen up to 1 billion (109) protein variants in a very short time

    Innov’SAR: A new approach for protein engineering and screening

    Get PDF
    We present a strategy that combines wet-lab experimentation and computational protein design for engineering polypeptide chains. The protein sequences were numerically coded and then processed using Fourier Transform (FT). Fourier coefficients were used to calculate the energy spectra called protein spectrum . We use the protein spectrum to model the biological activity/fitness of protein from sequence data. We assume that the protein fitness (catalytic efficacy, thermostabilty, binding affinity, aggregation, stability…) is not purely local, but globally distributed over the linear sequence of the protein. Our patented method does not require protein 3D structure information and find patterns that correlate with changes in protein activity (or fitness) upon amino acids residue substitutions. A minimal wet lab data set sampled from mutation libraries (single or multiple points mutations) were used as learning data sets in heuristic approaches that were applied to build predictive models. We show the performance of the approach on designed libraries for different examples1 and discuss how our approach can tackle epistatic phenomena2. We can screen up to 1 billion (109) protein variants in a very short time. F. Cadet, N. Fontaine, I. Vetrivel, M. Ng Fuk Chong, O. Savriama, X. Cadet, P. Charton (2018), Application of Fourier transform and proteochemometrics principles to protein engineering, BMC Bioinformatics (2018) 19:382, doi.org/10.1186/s12859-018-2407-8, https://rdcu.be/9qjp F. Cadet, N. Fontaine, G. Li, J. Sanchis, M. Ng Fuk Chong, R .Pandjaitan, I. Vetrivel 1, B. Offmann & M. T. Reetz (2018), A machine learning approach for reliable prediction of amino acid interactions and its application in the directed evolution of enantioselective enzymes, Scientific Reports 8(1), 16757, doi: 10.1038/s41598-018-35033-y. www.nature.com/articles/s41598-018-35033-

    Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte

    Get PDF
    Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities approaching 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Here, we reveal two distinct reduction potentials for the chemical environments of ‘free’ and ‘bound’ water and that both contribute to SEI formation. Free-water is reduced ~1V above bound water in a hydrogen evolution reaction (HER) and responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability

    Coupling of lysosomal and mitochondrial membrane permeabilization in trypanolysis by APOL1

    Get PDF
    Humans resist infection by the African parasite Trypanosoma brucei owing to the trypanolytic activity of the serum apolipoprotein L1 (APOL1). Following uptake by endocytosis in the parasite, APOL1 forms pores in endolysosomal membranes and triggers lysosome swelling. Here we show that APOL1 induces both lysosomal and mitochondrial membrane permeabilization (LMP and MMP). Trypanolysis coincides with MMP and consecutive release of the mitochondrial TbEndoG endonuclease to the nucleus. APOL1 is associated with the kinesin TbKIFC1, of which both the motor and vesicular trafficking VHS domains are required for MMP, but not for LMP. The presence of APOL1 in the mitochondrion is accompanied by mitochondrial membrane fenestration, which can be mimicked by knockdown of a mitochondrial mitofusin-like protein (TbMFNL). The BH3-like peptide of APOL1 is required for LMP, MMP and trypanolysis. Thus, trypanolysis by APOL1 is linked to apoptosis-like MMP occurring together with TbKIFC1-mediated transport of APOL1 from endolysosomal membranes to the mitochondrion

    Relationship between self-reported dietary intake and physical activity levels among adolescents: The HELENA study

    Get PDF
    Background Evidence suggests possible synergetic effects of multiple lifestyle behaviors on health risks like obesity and other health outcomes. Therefore it is important to investigate associations between dietary and physical activity behavior, the two most important lifestyle behaviors influencing our energy balance and body composition. The objective of the present study is to describe the relationship between energy, nutrient and food intake and the physical activity level among a large group of European adolescents. Methods The study comprised a total of 2176 adolescents (46.2% male) from ten European cities participating in the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Dietary intake and physical activity were assessed using validated 24-h dietary recalls and self-reported questionnaires respectively. Analyses of covariance (ANCOVA) were used to compare the energy and nutrient intake and the food consumption between groups of adolescents with different physical activity levels (1st to 3rd tertile). Results In both sexes no differences were found in energy intake between the levels of physical activity. The most active males showed a higher intake of polysaccharides, protein, water and vitamin C and a lower intake of saccharides compared to less active males. Females with the highest physical activity level consumed more polysaccharides compared to their least active peers. Male and female adolescents with the highest physical activity levels, consumed more fruit and milk products and less cheese compared to the least active adolescents. The most active males showed higher intakes of vegetables and meat, fish, eggs, meat substitutes and vegetarian products compared to the least active ones. The least active males reported the highest consumption of grain products and potatoes. Within the female group, significantly lower intakes of bread and cereal products and spreads were found for those reporting to spend most time in moderate to vigorous physical activity. The consumption of foods from the remaining food groups, did not differ between the physical activity levels in both sexes. Conclusion It can be concluded that dietary habits diverge between adolescents with different self-reported physical activity levels. For some food groups a difference in intake could be found, which were reflected in differences in some nutrient intakes. It can also be concluded that physically active adolescents are not always inclined to eat healthier diets than their less active peers.The HELENA study took place with the financial support of the European Community Sixth RTD Framework Programme (Contract FOOD-CT: 2005-007034). This work was also partially supported by the European Union, in the framework of the Public Health Programme (ALPHA project, Ref: 2006120), the Swedish Council for Working Life and Social Research (FAS), the Spanish Ministry of Education (EX-2007-1124, and EX-2008-0641), and the Spanish Ministry of Health, Maternal, Child Health and Development Network (number RD08/0072) (JPRL, LAM)

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore