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Coupling of lysosomal and mitochondrial
membrane permeabilization in trypanolysis
by APOL1
Gilles Vanwalleghem1,*,w, Frédéric Fontaine1,*, Laurence Lecordier1, Patricia Tebabi1, Kristoffer Klewe2,

Derek P. Nolan3, Yoshiki Yamaryo-Botté4, Cyrille Botté4, Anneke Kremer5, Gabriela Schumann Burkard6,

Joachim Rassow2, Isabel Roditi6, David Pérez-Morga1,7 & Etienne Pays1,8

Humans resist infection by the African parasite Trypanosoma brucei owing to the trypanolytic

activity of the serum apolipoprotein L1 (APOL1). Following uptake by endocytosis in the

parasite, APOL1 forms pores in endolysosomal membranes and triggers lysosome swelling.

Here we show that APOL1 induces both lysosomal and mitochondrial membrane

permeabilization (LMP and MMP). Trypanolysis coincides with MMP and consecutive release

of the mitochondrial TbEndoG endonuclease to the nucleus. APOL1 is associated with the

kinesin TbKIFC1, of which both the motor and vesicular trafficking VHS domains are required

for MMP, but not for LMP. The presence of APOL1 in the mitochondrion is accompanied

by mitochondrial membrane fenestration, which can be mimicked by knockdown of a

mitochondrial mitofusin-like protein (TbMFNL). The BH3-like peptide of APOL1 is required

for LMP, MMP and trypanolysis. Thus, trypanolysis by APOL1 is linked to apoptosis-like

MMP occurring together with TbKIFC1-mediated transport of APOL1 from endolysosomal

membranes to the mitochondrion.
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T
he protozoan flagellate Trypanosoma brucei brucei is the
prototype of African trypanosomes, parasites able to infect
a wide variety of mammalian hosts. In humans, T. b. brucei

cannot develop infection, but the two subspecies Trypanosoma
brucei rhodesiense and Trypanosoma brucei gambiense cause a
lethal disease termed sleeping sickness. This differential infection
ability results from the presence in normal human serum (NHS)
of the trypanolytic factor apolipoprotein L1 (APOL1), which kills
T. b. brucei but not T. b. rhodesiense and T. b. gambiense1–3.
APOL1 is the only extracellular member of a family of six
proteins that appear to play a role in the control of cell death on
infection by pathogens2. APOL1 contains an N-terminal ionic
pore-forming domain contiguous to a membrane-addressing
motif, together with a long amphipathic a-helix in the C-terminal
region1,3. This protein exhibits characteristics of pro-apoptotic
BCL2 proteins, such as a BCL2 homology 3 (BH3)-like peptide
and BAX-like ion channel properties2–4. In trypanosomes
APOL1 is taken up through endocytosis that involves the
haptoglobin–haemoglobin surface receptor TbHpHbR (refs 5,6).
On acidification in the endocytic pathway APOL1 is inserted in
vacuolar membranes where its pore-forming domain triggers
an influx of chloride ions resulting in osmotic swelling of
the lysosome3,6. T. b. rhodesiense and T. b. gambiense inhibit
APOL1 activity by expressing specific resistance proteins that,
respectively, neutralize the toxin by direct interaction with the
C-terminal helix or protect endosomal membranes against
APOL1 insertion1,6–8.

Apart from the evidence of lysosome swelling, the mechanism
underlying parasite lysis by APOL1 was not clear. In this work we
attempted to evaluate the nature of the lysosome membrane pores
formed by APOL1, and their involvement in trypanosome lysis.
Surprisingly, we discovered that APOL1 also generates mitochon-
drial membrane pores, and that a particular kinesin is required
for this process. Trypanosome death was found to coincide with
the APOL1-triggered release of a mitochondrial endonuclease
and subsequent DNA fragmentation.

Results
Involvement of lysosome swelling in lysis. We evaluated
whether trypanolysis by recombinant APOL1 (rAPOL1) could
result from lysosomal swelling. Increasing the osmotic strength of
the medium by addition of sucrose largely prevented lysosomal
swelling without affecting trypanolysis (Fig. 1a). As expected, the
presence of NH4Cl together with rAPOL1 inhibited lysosomal
swelling and trypanolysis due to elevation of endosomal pH3,9

(Fig. 1b). However, addition of NH4Cl after 15-min incubation
with rAPOL1 resulted in resistance to trypanolysis despite
lysosome swelling (Fig. 1b). Therefore, lysosomal swelling was
not responsible for trypanolysis.

Nature of the lysosomal pores. To characterize the lysosomal
pores formed by APOL1, we incubated T. brucei with different
fluorescent markers. In the absence of NHS or rAPOL1 the
probes remained within the lysosome, but with NHS or rAPOL1
all markers except the 10-kDa dextran spread into the cytoplasm
and nucleus (Fig. 2a; Supplementary Fig. 1). Thus, APOL1
appeared to permeabilize the lysosomal membrane for molecules
o10 kDa. Apoptotic lysosomal membrane permeabilization
(LMP) is thought to allow cathepsin release10, so we incubated
trypanosomes with fluorescent TbCATL cathepsin11. TbCATL–
BODIPY accumulated intact within the lysosome, with no
evidence for leakage on incubation with NHS or rAPOL1
despite lysosomal swelling (Fig. 2b). Moreover, incubation with
the cathepsin inhibitor FMK-024 did not prevent APOL1-
mediated trypanolysis but rather accelerated this process

(Fig. 2c), indicating, like other studies8,11,12, that trypanolysis
cannot result from cathepsin release and/or activity.

APOL1-induced effects in the mitochondrion. LMP was
accompanied by depolarization of the mitochondrial membrane
(Fig. 3a), which occurred together with the transfer of some
rAPOL1 to the mitochondrion (Fig. 3b; Supplementary Fig. 2).
This transfer required the insertion of APOL1 into endolysosomal
membranes as it was not observed in T. b. gambiense where
APOL1 cannot be inserted into these membranes6,8 (Fig. 3b;
Supplementary Fig. 2). The presence of APOL1 was also
accompanied by mitochondrial membrane fenestration evoking
a fission defect (Fig. 3c). In other unicellular eukaryotes cell
death can result from mitochondrial membrane permeabilization
(MMP) triggering the release of the mitochondrial endonuclease
G (EndoG) to the nucleus13. Knockdown of TbEndoG expression
following induction of TbEndoG RNAi14 (Supplementary Fig. 3a)
led to resistance to trypanolysis by NHS or rAPOL1 even
though lysosomal swelling and mitochondrial depolarization
occurred (Fig. 4a). Moreover, NHS or rAPOL1 treatment
induced TbEndoG release from the mitochondrion (Fig. 4b;
Supplementary Fig. 3b) along with evidence of nuclear alterations.
These included chromatin condensation into heterochromatin
patches (Figs 3c and 4c), DNA laddering in fragments resulting
from inter-nucleosomal cleavages (Fig. 4d) and strong increase
of DNA end labelling in the TUNEL assay, reflecting DNA
fragmentation (Fig. 4e). DNA fragmentation was strictly linked to
the presence of APOL1, since it did not occur in NHS depleted of
APOL1 (Fig. 4e). TbEndoG was involved in this fragmentation,
since knockdown of TbEndoG expression abolished NHS- or
rAPOL1-linked DNA end labelling (Fig. 4e). Thus, APOL1-
mediated trypanolysis clearly coincided with MMP.

Identification of a kinesin involved in LMP-MMP coupling. To
identify trypanosome components involved in APOL1-induced
MMP, we screened a trypanosome RNAi library for resistance
to NHS15. The gene encoding the C-terminal kinesin TbKIFC1
(ref. 16), which contains an N-terminal VPS-27, Hrs and STAM
(VHS) domain typically involved in membrane recognition for
vesicular trafficking (Fig. 5a), was selected four times from 12
independent experiments. TbKIFC1 depletion by RNAi
(Supplementary Fig. 4a) did not affect the in vitro growth rate,
receptor-mediated endocytosis, fluid phase uptake (Fig. 5b) or
endolysosomal pH (Supplementary Table 1), but conferred
important resistance to rAPOL1 (Fig. 5c). To verify the
specificity of the RNAi phenotype, we transfected a recoded
version of the TbKIFC1 gene in the RNAi cell line, allowing this
gene to escape RNAi targeting and to resume expression of
TbKIFC1. This experiment restored sensitivity to rAPOL1 unless
the ATP-binding motif of the kinesin was mutated17 (Fig. 5c;
Supplementary Fig. 4a), indicating that the motor domain
of TbKIFC1 is involved in cellular sensitivity to APOL1.
Significantly, when TbKIFC1 was knocked down, rAPOL1 no
longer affected nuclear structure or mitochondrial membrane
potential despite lysosomal swelling and LMP (Fig. 6a,b;
Supplementary Fig. 5a,b). Moreover, in these cells rAPOL1
was only observed in the lysosome and no longer in the
mitochondrion (Fig. 6c; Supplementary Fig. 5c). These results
demonstrated that TbKIFC1 motor activity is crucially involved
in coupling LMP to MMP. TbKIFC1 delocalization occurring on
NH4Cl treatment16 could explain the uncoupling between LMP
and trypanolysis observed when NH4Cl is added after rAPOL1
uptake (Fig. 1b). Consistent with these views, the Duolink ligation
assay18 revealed a close proximity (below 40 nm) between some
rAPOL1 and TbKIFC1 (Fig. 6d; Supplementary Fig. 6). TbKIFC1
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did not localize in the endocytic compartment (Supplementary
Fig. 4b), but trypanolysis was affected following mutations
of TbKIFC1 VHS residues (K94A/K97A) predicted to interact
with endosomes19 (Fig. 6e). Thus, TbKIFC1 could transport
endolysosomal membrane-inserted APOL1 to the mitochondrion.

Uncoupling trypanolysis from mitochondrial fenestration.
To evaluate the possible involvement of mitochondrial fenestra-
tion in the process of trypanolysis, we attempted to identify
trypanosome enzymes that could be responsible for mitochon-
drial fission. RNAi-mediated knockdown of a trypanosomal
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mitofusin-like protein that we termed TbMFNL (Tb927.7.2410;
Supplementary Fig. 7) mimicked the mitochondrial membrane
fenestration observed with APOL1 (Fig. 7a). However,
mitochondrial membrane fenestration per se, such as that
resulting from depletion of TbMFNL, was not trypanolytic.
This fenestration did not cause nuclear heterochromatinization
and trypanolysis, nor did it affect trypanolysis by rAPOL1
(Fig. 7a,b).

Role of the BH3-like peptide. We generated a series of
rAPOL1variants mutated in or deleted of the BH3-like peptide,
including a mutation known to inactivate BH3 in mice (MutE)20

(Fig. 8a). All rAPOL1 effects were abrogated by deletion or MutE
mutation, indicating that this peptide is required for MMP
(Fig. 8a,b). With a given BH3 mutant (MutK), mitochondrial
membrane depolarization occurred together with resistance to
trypanolysis, suggesting membrane insertion without proper
MMP (Fig. 8a,b).

To approach the mechanism of APOL1 insertion into
membranes and the possible role of the BH3-like peptide in this
process, we incubated isolated mitochondria with rAPOL1 or
rAPOL1 fragments. As shown in Fig. 9, under these in vitro
conditions the rAPOL1 pore-forming domain was able to insert
into the membrane of isolated mitochondria independently of the
BH3-like peptide. However, these results do not allow any
conclusion regarding the structure of the APOL1 pores, which
may be influenced by the BH3-like peptide.

Discussion
Our findings reveal that in T. brucei, APOL1 triggers apoptosis-
like cell death. So far, programmed trypanosome death has been
reported following oxidative stress in vitro14,21, but T. brucei
trypanolysis by APOL1 does not seem to involve oxidative
stress12 (Supplementary Fig. 8a). APOL1 uptake resulted in both
LMP and MMP. A similar LMP/MMP coupling was observed
in cells targeted by the pore-forming enterohaemorrhagic
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Escherichia coli hemolysin22 or VacA Helicobacter pylori toxin23.
In higher eukaryotic cells LMP/MMP coupling is supposed to
involve cathepsin release from the lysosome10. In trypanosomes,
the lysosomal pores formed by APOL1 are too small for cathepsin
release, and cathepsins do not promote trypanolysis8,11,12.
Similarly, caspases cannot be involved because trypanosomatids

lack caspases24. Kinetic data suggested a quick dispatching of
APOL1 to both mitochondrion and lysosome. APOL1 is probably
trafficked within membranes, since rAPOL1 did not reach the
mitochondrion in T. b. gambiense, where APOL1 is prevented
from endolysosomal membrane insertion6,8. As trypanolysis is
clearly dependent on endocytosis1,6,7, the TbKIFC1-mediated

L

N

FP

Merge
+phase

Merge

T
bK

IF
C

1 
R

N
A

i
+

 D
ox

 +
 r

A
P

O
L1

rAPOL1
BODIPY Mitotracker

n

– 
rA

P
O

L1

C
trl

Duolink
TbKIFC1

Mitotracker
+ Hoechst

Merge +
phase 

+
 r

A
P

O
L1 T

bK
IF

C
1

R
N

A
i +

 D
ox

–
+

 addW
T

 

55

100

TbKIFC1
RNAi + Dox

kDa +
ad

dK
/A

+
ad

dW
T

TbKIFC1

Tubulin

Ctrl

****

0.0 0.5 1.0 1.5 2.0 2.5

rAPOL1 (μg ml–1)

0

50

100

T
ry

pa
no

so
m

es
 (

%
) TbKIFC1 RNAi

+ addWT+Dox

TbKIFC1 RNAi
+ addK/A+Dox

TbKIFC1 RNAi
+ Dox

Ctrl

***

TMRE

C
tr

l
+

rA
P

O
L1

+
 D

ox
+

 r
A

P
O

L1

Phase TMRE CF

+
 r

A
P

O
L1

+addT/N+Dox 

Ctrl

+Dox

Ctrl

+addWT+Dox 

+addWT+Dox

+Dox

+addT/N+Dox 

Ctrl

+FCCP

+rAPOL1

103 104 105 103102 104 105

TMRE

Figure 6 | TbKIFC1 RNAi-mediated uncoupling between LMP and MMP following 1-h incubation with 10 lg ml� 1 rAPOL1. (a) Transmission electron

microscopy of doxyxycline-induced TbKIFC1 RNAi cells (FP, flagellar pocket; L, lysosome; N, nucleus; n, nucleolus; arrowhead and arrow: normal nucleus and

swollen lysosome, respectively; scale bar, 1 mm); (b) Tetramethylrhodamine ethyl ester perchlorate (TMRE) and carboxyfluorescein (CF) staining of control

(Ctrl), TbKIFC1 RNAi and addback cell lines (FACS of 40,000 trypanosomes; left: effect of 10mM proton ionophore carbonyl cyanide-4-(trifluoromethoxy)

phenylhydrazone (FCCP) (15 min incubation); scale bars, 2mm). (c) Intracellular localization of rAPOL1–BODIPY (10mg ml� 1) in TbKIFC1 RNAi cells (scale

bars, 2 mm). (d) Duolink labelling using the anti-TbKIFC1 and anti-APOL1 antibodies (scale bars, 2mm). (e) TbKIFC1 involvement in trypanolysis (top:

western blotting; bottom: trypanolysis after overnight incubation with rAPOL1) (addK/A, addback K94A/K97A; error bars: s.e.m.; three replicates;

n¼ 3; statistical significance: two-way analysis of variance, Sidak post hoc).

0.0 0.5 1.0 1.5 2.0 2.5

0

50

100 TbMFNL RNAi + Dox

Ctrl

rAPOL1 (μg ml–1)

T
ry

pa
no

so
m

es
 (

%
)

M
FP

C
tr

l +
 N

H
S

1 μm

N
M

K

N
M

FP
M

T
bM

F
N

L 
R

N
A

i
 +

 D
ox

 

FP

K
M

250 nm500 nm

M

N n

M

N n
K

K

K

M

250 nm

Figure 7 | Mitochondrial targeting by APOL1. (a) Mitochondrion remodelling in 30% NHS-treated cells or TbMFNL RNAi cells (2 daysþDox). Left panels:

transmission electron microscopy (red arrows and yellow arrowheads show longitudinal and cross-sections of fenestrated mitochondria). Right panels:

focused ion beam–scanning electron microscope tomography. FP, flagellar pocket; K, kinetoplast; M, mitochondrion; N, nucleus; n, nucleolus; arrows,

heterochromatin patches. Videos are available in Supplementary Materials. (b) Effect of TbMFNL RNAi (2 days with Dox) on trypanolysis after overnight

incubation with rAPOL1 (error bars: s.e.m.; three replicates; n¼ 3).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9078

6 NATURE COMMUNICATIONS | 6:8078 | DOI: 10.1038/ncomms9078 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


APOL1 targeting to the mitochondrion must follow a first uptake
into endosomes. Accordingly (i) we never observed MMP without
LMP; (ii) the LMP/MMP uncoupling effect of NH4Cl could be
explained by the association of TbKIFC1 with acidic vesicles16;
(iii) in mice, KIFC1 is involved in early endosome trafficking25;
and (iv) TbKIFC1 also appears to be involved in suramin
trafficking after endocytosis26. APOL1 did not seem to be
trafficked to the plasma membrane, since rAPOL1–BODIPY was
never detected in this compartment, and no evidence for plasma
membrane pores could be obtained until cell death, as monitored
by propidium iodide staining (Supplementary Fig. 8b). APOL1
was not trafficked through intermembrane lipid transport
pathways, since knockdown of components supposedly involved
in intracellular lipid trafficking had no major impact on
trypanolysis (Supplementary Table 2; Supplementary Fig. 9),
and TbKIFC1 knockdown did not significantly affect either
cellular lipid composition or sphingolipid and cholesterol
turnover (Supplementary Fig. 10).

APOL1 targeting to the mitochondrion resulted in membrane
fenestration mimicked by TbMFNL depletion, evoking inhibition
of mitochondrial fission similar to that observed on inhibition
of the mitofusin-related protein DNM1 of yeast27 (phylogenetic
relationship between TbMFNL and ScDNM1 is shown in
Supplementary Fig. 7a). This phenotype suggests direct or
indirect inhibition of the fission activity of TbMFNL by
APOL1, evoking the interaction occurring between the
pro-apoptotic BAK and mitofusins28 or the mitochondrial

fragmentation resulting from BAX expression in T. brucei29.
Moreover, like cell death induced by apoptotic BCL2 family
members trypanolysis was linked to MMP involving the BH3-like
peptide of APOL1. In T. brucei bloodstream forms MMP could
not release cytochrome c, which is absent at this stage, but
triggered TbEndoG release that appeared to account entirely for
rAPOL1/NHS-induced nuclear DNA degradation. This finding
ruled out the involvement of cytoplasmic endonucleases,
like TbTatD, such as occurs during oxidative stress-induced
trypanolysis30. However, other mitochondrial proteins could be
released following MMP, and indeed the knockout of a putative
trypanosomal homologue of apoptosis-inducing factor resulted
in low but significant resistance to rAPOL1 (Supplementary
Table 2).

We conclude that trypanolysis by human serum is due to
apoptosis-like MMP resulting from TbKIFC1-mediated transport
of APOL1 from endosomes to the mitochondrion (Fig. 10). How
this transport occurs remains to be elucidated, but the insertion
of APOL1 into membranes appears to be necessary, and the
requirement of acidic pH for such insertion explains the necessity
for APOL1 to first traffic through the endocytic system to be
active1,3,9,15. Our data suggest fusion events between endosomal
and mitochondrial membranes. Although such events have not
been documented so far, intimate local contacts and microfusion
between mitochondria and endolysosomal vacuoles have been
reported31–35. In particular, in pigment cells the contacts between
the lysosome-related melanosomes and mitochondria involve the
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mitochondrial fusion protein MFN2 (ref. 35). Given the apparent
effect of APOL1 on a mitofusin-like activity, fusion of endosomal
and mitochondrial membranes could be influenced by APOL1.
Finally, the recent report that the conductivity of the APOL1
membrane pore is drastically enhanced when switching from low
to neutral pH36 may provide an explanation for the differential
pore activity between lysosome and mitochondrion.

Methods
Trypanosomes and transgenesis. The parasites were either from culture or
isolated by DE-52 column purification of infected rodent blood. Stable transfor-
mations were obtained with the nucleofection method from Amaxa. Briefly,
4� 107 parasites were collected from culture of 5–8� 105 cells per ml density,
centrifuged and immediately resuspended in 100ml of Amaxa Human T cell
nucleofector solution (Lonza). Transfection of 20 mg of DNA was achieved in
Nucleofector Device with programme X-001. Transfected cells were resuspended in
10 ml culture medium and incubated for 16 h before addition of suitable selection
drugs and dilution to 100 ml in 24-well plates. Typical experiment gave rise to
10–30 positive wells out of 96 after 6–8 days.

In vitro trypanolysis and growth assays. For the overnight lysis test, parasites
isolated from mice were diluted to 105 cells per ml in HMI-9 medium containing
10% FCS and 10% Serum Plus, and aliquoted in triplicate in 96-well plates in the
presence of various concentrations of either rAPOL1 or NHS. After 20–24-h
incubation at 37 �C, parasites were counted with a haemocytometer and the
ATP level was measured with CellTiter-Glo Luminescent Cell Viability Assay
(Promega). For the kinetic lysis test, parasites were diluted to 5� 105 cells per ml
and aliquoted in triplicate in 96-well plates in the presence of either rAPOL1 or
NHS. Live cells were counted every hour with a haemocytometer. We routinely
used 10 mg ml� 1 rAPOL1 because this is the physiological concentration of
APOL1 in NHS1. In the experiments shown in Fig. 1, 20 mM NH4Cl was added
immediately or 15 min after initiation of lysis. In vitro growth assays were
performed by daily dilutions of trypanosomes at 105 ml� 1 in HMI-9-
supplemented medium. Normalizations were performed to reference situations.

T. brucei RNAi library screening. The screening for APOL1 resistance was
performed as in ref. 15, using the library described in ref. 37. The bloodstream-
form RNAi library was cultivated in 10-ml flasks in HMI-9 medium containing
10% FCS and 10% Serum Plus in the presence of 1 mg ml� 1 geneticin and
1 mg ml� 1 hygromycin. For induction of RNAi, 1 mg ml� 1 doxycycline was added
to the culture. After 1–3 days of RNAi induction, the library was diluted in the
same culture medium to 5� 104 to 5� 105 cells per ml in 10-ml flasks. After
treatment with 0.01 to 3% NHS, the emergence of resistant populations was
monitored. Genomic DNA was extracted (Qiamp DNA minikit, Qiagen) and RNAi

inserts were amplified by PCR with Phusion DNA polymerase (Invitrogen), using
the p2T7-for and p2T7-rev2 primers37. The PCR products were cloned into TOPO
Zero blunt plasmid (Invitrogen) before bacterial transformation and sequencing.
The sequences of the RNAi inserts were analysed by BLAST algorithm in NCBI,
GeneDB and TriTryp databases.

The TbKIFC1 DNA fragments selected in four independent experiments were
from nucleotides 1,692–2,446, 2,438–3,130 and 1,925–2,446 (two times).

TbEndoG, TbMFNL and TbKIFC1 RNAi. A 540-bp or a 280-bp fragment derived
from the TbEndoG or TbMFNL open reading frame were amplified using the
primer sets: 50-GATCCATGAGGATCCATACGTGCACTGTCATCCCA-30 and
50-TTCCATGACTCGAGATATAGTCACCGGGCTGCAC-30 or 50-GATCCATG
AGGATCCTTATTTTGATGTTTGACCCC-30 and 50-TTCCATGACTCGAGCG
GTTGAGGAACTCTTATTG-30 , respectively.

The TbKIFC1 RNAi was built as described16. The amplification products were
digested with BamHI and XhoI and ligated into the p2T7-177 plasmid38 digested
with the same enzyme mix. Linearized plasmids were transfected in single marker
cell line38. RNAi was induced by addition of 1 mg ml� 1 doxycycline (Duchefa).

TbKIFC1 recoded allele complementation. TbKIFC1 open reading frame was
recoded to avoid targeting by the TbKIFC1 RNAi while conserving an identical
coding sequence (DNA sequence identity: 67%). The recoded TbKIFC1 was
mutated at a key amino acid (T577N) to abolish its capacity to bind ATP17 or at
K94A/K97A to tentatively abolish its capacity to bind acidic cluster-dileucine acid
sorting signals19. Cloning into the pTSARib vector was performed as previously
described8. BglII-restricted plasmids were transfected into the TbKIFC1 RNAi
cell line.

Quantitative RT–PCR. Quantitative RT–PCR was performed as described8.
Briefly, isolated RNA was treated with DNase before the reverse transcription
reaction, using TURBO DNase (Ambion, Texas, USA) according to the
manufacturers’ instructions. The DNase was inactivated by the addition of 0.1
volume of DNase inactivation buffer for 2 min at room temperature.
Complementary DNA was synthesized with Transcriptor Reverse Transcriptase
(Roche Applied Science) according to the manufacturers’ instructions. The
following primer sets were used for mRNA quantification: 50-GCATACGATGG
CGGTTTCT-30 and 50-CGCTCCACAACCATTCCTATC-30 for TbEndoG;
50-AAGACACGTCGCCTCTCATT-30 and 50-GCACGGGTGTTGATACCTCT-30

for TbKIFC1; and 50-ATTTGGCATCCACTTTGTCA-30 and 50-ACCGGGTGGT
AATAGAGACG-30 for TbMFNL. Normalization was performed with the primer
set 50-CACCGAACTCTCCGTCAAGT-30 and 50-AGCCTGAATTTTCCCGT
ACA-30 , targeting H2B mRNA.

Recombinant proteins. His6-tagged APOL1 (E28-L398) or APOL1 variants were
expressed from pStaby1.2 vector (Delphi Genetics) in E. coli after 4 h induction at
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37 �C with 1 mM isopropyl b-D-thiogalactoside. After washing, inclusion bodies
were dissolved in 6 M guanidium-HCl, 50 mM phosphate buffer (pH 8.0) and
incubated with Ni-NTA beads (Qiagen) for 16 h at 4 �C. All washing steps occurred
at pH 8. After elution and dialysis against 20 mM acetic acid, the protein was
more than 96% pure, as determined by SDS–polyacrylamide gel electrophoresis.
BODIPY Fl labelling was performed by simultaneous in vitro transcription and
translation in a TnT Coupled Wheat Germ Extract System with either FluoroTect
GreenLys or Transcend tRNA (Promega).

APOL1 depletion from NHS. The serum resistance-associated protein (SRA) of
T. b. rhodesiense specifically and strongly interacts with APOL1, allowing specific
depletion of APOL1 from NHS1. SRA affinity column was prepared as described
in ref. 1, by incubation of 100 mg of purified recombinant SRA-His in PBS with
Nickel agarose beads overnight at 4 �C. Beads were washed with PBS–1%
3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate
(CHAPS) and equilibrated in 1� MES buffer (0.6 M NaCl, 50 mM MES pH 5.8).
A volume of 150 ml of human serum and 150ml of 2�MES buffer pH 5.8 were
mixed and one half was incubated with the SRA-loaded beads for 2 h 30 min at
4 �C. Beads were eliminated by centrifugation and depletion was repeated for 2 h
with fresh SRA beads. The depleted and undepleted sera were dialysed for 2 h at
4 �C against HMI-9 before overnight trypanolysis test. To ensure full APOL1
depletion, aliquots were analysed by western blotting before and after affinity
chromatography, and additional rounds of elution were performed if necessary.

TUNEL assay. A total of 2� 107 trypanosomes was incubated with 30% FBS or
30% NHS, then collected and fixed with 2% paraformaldehyde (PFA). The
ApoAlert DNA Fragmentation Assay Kit (Clontech) was used following the
manufacturer’s instructions. Detection was performed either by flow cytometry
using fluorescence-activated cell sorter (FACS) canto II or by immunofluorescence
using a Zeiss Axioimager M2.

Western blot analysis. Western blots were incubated for 2 h with a 1:1,000
dilution of anti-TbEndoG antibody, 1:2,000 dilution of rabbit anti-APOL1 antibody
(Sigma) or 1:100 dilution of mouse monoclonal anti-TbKIFC1 antibody (H3)
(ref. 16) in 150 mM NaCl, 0.5% (w/v) Tween 20, 20 mM Tris-HCl (pH 7.5) with 1%
non-fat milk. The secondary antibodies, peroxidase-conjugated monoclonal mouse
anti-rat IgGs or goat anti-rabbit IgGs (1:5,000; Serotec), were diluted in the same
buffer and the bound antibodies were detected by chemiluminescence
(Amersham).

Live microscopy and flow cytometry. For the mitochondrial membrane
polarity evaluation, trypanosomes were incubated for at least 15 min with 25 pM
tetramethylrhodamine ethyl ester perchlorate (Life Technology) before treatment.
For mitochondrial staining the mitotracker CMX ROS was added before APOL1 or
NHS treatment, so that membrane depolarization occurring afterwards was
without influence on the fluorescence level. For LMP and uptake measurements,
trypanosomes were incubated with 0.5 mg ml� 1 Transferrin-AF594 or -AF633,
Dextran–fluorescein isothiocyanate (FITC) 10 kDa, Dextran-AF633 40 kDa (Life
Technologies) or 5(6)-Carboxyfluorescein (Sigma). Lucifer yellow and Nile red
(Sigma) were used at 2 mg ml� 1 and 1.5 mg ml� 1, respectively. For live micro-
scopy, trypanosomes were mounted on a 1% low-melting-point agarose pad sealed
with rubber glue. Cells were imaged in single plane with Axioimager M2 widefield
fluorescence microscope with a � 100 Plan-APOCHROMAT 1.4 objective. For
flow cytometry, cells were identified by a FSC/SSC gate and analysed with a FACS
canto II. The FACS data was further analysed in FlowJo.

Immunofluorescence. Cells were fixed and treated as described8. PBS-washed
cells were fixed in 2% PFA for 10 min at 20 �C before being spread on
poly(L-lysine)-coated slides and subsequently treated with 0.1% (v/v) Triton X-100
in Tris-buffered saline for 10 min at 20 �C. The anti-TbKIFC1 monoclonal
antibody was obtained from the H3 hybridoma16 and used at a 1:10 dilution.
The anti-TbEndoG antibody was used at a 1:200 dilution. Primary antibodies
were detected with an Alexa Fluor 488- or 594-conjugated goat anti-mouse or
anti-rabbit IgG (Life Technologies). Cells were analysed with Zeiss Axioimager M2
widefield microscope. Deconvolution using the fast iterative algorithm (Zen Blue)
was performed in Supplementary Fig. 4.

Transmission electron microscopy. Cells were fixed for 1 h at room temperature
in 2.5% glutaraldehyde in culture medium, and postfixed in 2% OsO4 in the same
buffer. After serial dehydration in increasing ethanol concentrations, samples were
embedded in agar 100 (Agar Scientific Ltd., UK) and left to polymerize for 2 days at
60 �C. Ultrathin sections (50–70-nm thick) were collected in Formvar-carbon-
coated copper grids by using a Leica EM UC6 ultramicrotome and stained with
uranyl acetate and lead citrate. Observations were made on a Tecnai10 electron
microscope (FEI), and images were captured with an Olympus VELETA camera
and processed with AnalySIS and Adobe Photoshop softwares.

Focused ion beam–scanning electron microscope imaging. Samples were
incubated in fixative (2% PFA, Applichem), 2.5% gluteraldehyde (ethylmethane
sulfonate (EMS)) in 0.15 M sodium cacodylate (Sigma-Aldrich) buffer, pH7.4) at
room temperature for 30 min. Fixative was removed by washing 5� 3 min in
0.15 M cacodylate buffer and samples were incubated in 1% osmium (OsO4, EMS),
1.5% potassium ferrocyanide (Sigma-Aldrich) in 0.15 M cacodylate buffer for
40 min at room temperature. This was immediately followed by a second
incubation in OsO4 (1% osmium in double distilled H2O (ddH2O) for 40 min at
room temperature. After washing in ddH2O for 5� 3 min, samples were incubated
overnight at 4 �C in 1% uranyl acetate (EMS). Uranyl acetate was removed by
washing in ddH2O for 5� 3 min and subsequently dehydrated and embedded as
indicated above. Embedded samples were then mounted on aluminium s.e.m. stubs
(diameter 12 mm) and coated with B8 nm of platinum (Quorum Q150T ES).
Focused ion beam–scanning electron microscope imaging was performed using a
Zeiss Auriga Crossbeam system with Atlas3D software. The focused ion beam was
set to remove 5-nm sections by propelling gallium ions at the surface. Imaging was
done at 1.5 kV using an ESB (back-scattered electron) detector. Three-dimensional
reconstruction and segmentation were generated from the images stacks using Fiji
ImageJ (NIH, USA) and ilastik softwares.

APOL1 import into outer mitochondrial membrane. Standard methods for
protein import into isolated mitochondria were followed39. Various APOL1
PCR products were cloned into the KpnI and XhoI restriction sites of the
pYES2 vector (Invitrogen) with the decahistidine coding sequence between the
XhoI and SphI restriction sites. Radiolabelled APOL1 was synthesized in
reticulocyte lysate (TNT T7 Coupled Reticulocyte Lysate System, Promega, L4610)
in the presence of 35S-methionine and incubated with or without isolated
mitochondria. The samples contained BSA buffer (3% (w/v) BSA, 80 mM KCl,
10 mM MOPS-KOH, pH 7.2), 2 ml reticulocyte lysate, 2 mM NADH, 1 mM ATP,
20 mM potassium phosphate and 30 mg (yeast) or 40mg (rat liver) mitochondrial
protein in a total volume of 100 ml. The import reactions were carried out for
10 min at 25 �C. The samples were subsequently cooled on ice and proteinase
K was added at different concentrations. Following incubation for 10 min at 0 �C,
the protease was inactivated by 2 mM phenylmethylsulfonyl fluoride. Re-isolated
mitochondria were analysed by SDS-PAGE and proteins were detected by
autoradiography.

Measurement of endosomal pH. We followed exactly the method previously
described8. The accumulation of the weak base [14C] methylamine was employed
to investigate the intracellular pH and the pH of acidic organelles. Cells
(2–3� 107 ml� 1) were incubated at 37 �C in HMI-9 medium in the presence of
[14C] methylamine (0.1 mCi ml� 1; 1.8 mM) for 40 min. The cells were separated
from the medium by rapid centrifugation through a 200-ml oil layer (2:1, v/v,
mixture of di-N-butylphthalate and di-iso-octylphthalate). A parallel experiment
was performed to determine the intracellular volume and the amount of trapped
extracellular probe present in the cell pellet by incubation with 3H2O (1mCi ml� 1)
and [14C] carboxyinulin (0.1 mCi ml� 1). The accumulation ratio was determined
by dividing the intracellular concentration of the probe by the extracellular
concentration. The cytoplasmic pH was assessed by measuring methylamine
accumulation in the presence of chloroquine (0.3 mM) or bafilomycin (1.8 mM).

Analysis of the fatty acid composition. Total lipid was extracted by
chloroform:methanol, 1:2 (v/v) and chloroform:methanol, 2:1 (v/v). Pooled organic
phase was subjected to biphasic separation by adding water. Organic phase was
dried under N2 gas flux. Total lipid was further separated to neutral lipid and
phospholipid by silica gel column. Neutral lipid was eluted by chloroform:acetone
4:1 (v/v) and phospholipid was eluted by methanol. Each lipid fraction was dried
under N2 gas flux. Each lipid fraction was methanolized by 0.5 M methanoic HCl at
100 �C for 1 h. Fatty acid methyl ester was extracted by hexane. The hexane phase
was analysed by gas–liquid chromatography (PerkinElmer) on a BPX70 (SGE)
column. Fatty acid methyl esters were identified by comparison of their retention
times with those of standards and quantified by the surface peak method using
C15:0 fatty acid for calibration.

Lipid chase experiments. Growing cells (106 ml� 1) were washed and
resuspended in serum-free HMI-9 supplemented with 2 mg ml� 1 lipid-free BSA
for 30 min. The suspension was supplemented (v/v) with a final concentration of
either 2 mM BODIPY FL C5-Ceramide (Life Technologies) or 0.5 mM TopFluor
Cholesterol (Avanti) together with 6 mg ml� 1 lipid-free BSA for 30 min at 37 �C.
Parasites were then pelleted by centrifugation and resuspended in HMI-9þ serum
medium at 37 �C, and aliquots were taken at different time points for FACS
analysis.

Phylogenetic tree. The sequences were aligned using MUSCLE, the alignment was
curated using Gblocks and MrBayes was used for the phylogenetic analysis.
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