159 research outputs found

    Beyond the Solar Circle − Trends in Massive Star Formation Between the Inner and Outer Galaxy

    Get PDF
    We have compiled the most complete compact and ultracompact H II region catalogue to date via multiwavelength inspection of survey data. We utilize data from the recently available SASSy 850 Όm survey to identify massive star-forming clumps in the outer Galaxy (RGC > 8.5 kpc) and cross-match with infrared and radio data of known UC H II regions from the RMS database. For the inner Galaxy sample (RGC < 8.5 kpc), we adopt the compact H II regions from previous works that used similar methods to cross-match ATLASGAL with either CORNISH or RMS, depending on the location within the Galactic plane. We present a new UC H II region catalogue that more than doubles the original sample size of previous work, totalling 536 embedded H II regions and 445 host clumps. We examine the distance independent values of NLy/M and Lbol/M as proxies for massive star formation efficiency and overall star formation efficiency, respectively. We find a significant trend showing that Lbol/M decreases with increasing RGC, suggesting that the overall star formation per unit mass is less in the outer Galaxy

    Nonlinear dynamics of soft boson collective excitations in hot QCD plasma III: bremsstrahlung and energy losses

    Full text link
    Within of the framework of semiclassical approximation a general formalism for deriving an effective current generating bremsstrahlung of arbitrary number of soft gluons (longitudinal or transverse ones) in scattering of higher-energy parton off thermal parton in hot quark-gluon plasma with subsequent extension to two and more scatterers, is obtained. For the case of static color centers an expression for energy loss induced by usual bremsstrahlung of lowest-order with allowance for an effective temperature-induced gluon mass and finite mass of the projectile (heavy quark), is derived. The detailed analysis of contribution to radiation energy loss associated with existence of effective three-gluon vertex induced by hot QCD medium, is performed. It is shown that in general, the bremsstrahlung associated with this vertex have no sharp direction (as in the case of usual bremsstrahlung) and therefore here, we can expect an absence of suppression effect due to multiple scattering. For the case of two color static scattering centers it was shown that the problem of calculation of bremsstrahlung induced by four-gluon hard thermal loop (HTL) vertex correction can be reduced to the problem of the calculation of bremsstrahlung induced by three-gluon HTL correction. It was shown that for limiting value of soft gluon occupation number Nk∌1/αsN_{\bf k}\sim 1/\alpha_s all higher processes of bremsstrahlung of arbitrary number of soft gluons become of the same order in coupling, and the problem of resummation of all relevant contributions to radiation energy loss of fast parton, arises. An explicit expression for matrix element of two soft gluon bremsstrahlung in small angles approximation is obtained.Comment: 68 pages, 9 EPS figures; added new sections 8, 10 and reference

    Face morphology: Can it tell us something about body weight and fat?

    Get PDF
    This paper proposes a method for an automatic extraction of geometric features, related to weight parameters, from 3D facial data acquired with low-cost depth scanners. The novelty of the method relies both on the processing of the 3D facial data and on the definition of the geometric features which are conceptually simple, robust against noise and pose estimation errors, computationally efficient, invariant with respect to rotation, translation, and scale changes. Experimental results show that these measurements are highly correlated with weight, BMI, and neck circumference, and well correlated with waist and hip circumference, which are markers of central obesity. Therefore the proposed method strongly supports the development of interactive, non-obtrusive systems able to provide a support for the detection of weight-related problems

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    • 

    corecore