2,813 research outputs found
The role of external broadcasting in a closed political system
This article investigates the role and impact of external broadcasting (radio and television) on a closed political system, through the example of the two post-war German states: the West German Federal Republic of Germany (FRG) and the East German German Democratic Republic (GDR). The aim is to debunk myths about the influence of external broadcasting on the events that led to German reunification in 1990. The study follows a historical approach and discusses what role external media played during the years of a divided Germany. The findings are based on several historical sources, research reports from the 1950s and 1960s and over 100 biographical interviews with former residents of the German Democratic Republic (GDR). The article analyses the impact of external broadcasting on citizens and the political elite in times of crisis as well as during everyday life
Signatures of granular microstructure in dense shear flows
Granular materials react to shear stresses differently than do ordinary
fluids. Rather than deforming uniformly, materials such as dry sand or
cohesionless powders develop shear bands: narrow zones containing large
relative particle motion leaving adjacent regions essentially rigid[1,2,3,4,5].
Since shear bands mark areas of flow, material failure and energy dissipation,
they play a crucial role for many industrial, civil engineering and geophysical
processes[6]. They also appear in related contexts, such as in lubricating
fluids confined to ultra-thin molecular layers[7]. Detailed information on
motion within a shear band in a three-dimensional geometry, including the
degree of particle rotation and inter-particle slip, is lacking. Similarly,
only little is known about how properties of the individual grains - their
microstructure - affect movement in densely packed material[5]. Combining
magnetic resonance imaging, x-ray tomography, and high-speed video particle
tracking, we obtain the local steady-state particle velocity, rotation and
packing density for shear flow in a three-dimensional Couette geometry. We find
that key characteristics of the granular microstructure determine the shape of
the velocity profile.Comment: 5 pages, incl. 4 figure
Charge Lattices and Consistency of 6D Supergravity
We extend the known consistency conditions on the low-energy theory of
six-dimensional N = 1 supergravity. We review some facts about the theory of
two-form gauge fields and conclude that the charge lattice Gamma for such a
theory has to be self-dual. The Green-Schwarz anomaly cancellation conditions
in the supergravity theory determine a sublattice of Gamma. The condition that
this sublattice can be extended to a self-dual lattice Gamma leads to a strong
constraint on theories that otherwise appear to be self-consistent.Comment: 15 pages. v2: minor changes; references, additional example added;
v3: minor corrections and clarifications added, JHEP versio
Gas accretion as the origin of chemical abundance gradients in distant galaxies
It has recently been suggested that galaxies in the early Universe can grow
through the accretion of cold gas, and that this may have been the main driver
of star formation and stellar mass growth. Because the cold gas is essentially
primordial, it has a very low abundance of elements heavier than helium
(metallicity). As it is funneled to the centre of a galaxy, it will lead the
central gas having an overall lower metallicity than gas further from the
centre, because the gas further out has been enriched by supernovae and stellar
winds, and not diluted by the primordial gas. Here we report chemical
abundances across three rotationally-supported star-forming galaxies at z~3,
only 2 Gyr after the Big Bang. We find an 'inverse' gradient, with the central,
star forming regions having a lower metallicity than less active ones, opposite
to what is seen in local galaxies. We conclude that the central gas has been
diluted by the accretion of primordial gas, as predicted by 'cold flow' models.Comment: To Appear in Nature Oct 14, 2010; Supplementary Information included
her
Accuracy of Malaria Rapid Diagnostic Tests in Community Studies and their Impact on Treatment of Malaria in an Area with Declining Malaria Burden in North-Eastern Tanzania.
Despite some problems related to accuracy and applicability of malaria rapid diagnostic tests (RDTs), they are currently the best option in areas with limited laboratory services for improving case management through parasitological diagnosis and reducing over-treatment. This study was conducted in areas with declining malaria burden to assess; 1) the accuracy of RDTs when used at different community settings, 2) the impact of using RDTs on anti-malarial dispensing by community-owned resource persons (CORPs) and 3) adherence of CORPs to treatment guidelines by providing treatment based on RDT results. Data were obtained from: 1) a longitudinal study of passive case detection of fevers using CORPs in six villages in Korogwe; and 2) cross-sectional surveys (CSS) in six villages of Korogwe and Muheza districts, north-eastern, Tanzania. Performance of RDTs was compared with microscopy as a gold standard, and factors affecting their accuracy were explored using a multivariate logistic regression model. Overall sensitivity and specificity of RDTs in the longitudinal study (of 23,793 febrile cases; 18,154 with microscopy and RDTs results) were 88.6% and 88.2%, respectively. In the CSS, the sensitivity was significantly lower (63.4%; χ2=367.7, p<0.001), while the specificity was significantly higher (94.3%; χ2=143.1, p<0.001) when compared to the longitudinal study. As determinants of sensitivity of RDTs in both studies, parasite density of<200 asexual parasites/μl was significantly associated with high risk of false negative RDTs (OR≥16.60, p<0.001), while the risk of false negative test was significantly lower among cases with fever (axillary temperature ≥37.5 °C) (OR≤0.63, p≤0.027). The risk of false positive RDT (as a determinant of specificity) was significantly higher in cases with fever compared to afebrile cases (OR≥2.40, p<0.001). Using RDTs reduced anti-malarials dispensing from 98.9% to 32.1% in cases aged ≥5 years. Although RDTs had low sensitivity and specificity, which varied widely depending on fever and parasite density, using RDTs reduced over-treatment with anti-malarials significantly. Thus, with declining malaria prevalence, RDTs will potentially identify majority of febrile cases with parasites and lead to improved management of malaria and non-malaria fevers
The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation
PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
From What We Eat, We Define Ourselves: The Creative Fictions and Nonfictions of Contemporary Food
This panel, made up of current and former Winthrop writing students and of current Winthrop faculty seeks to look creatively at the myriad of ways in which the food we eat might offer another helpful entrance point into defining our identity
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
