97 research outputs found
A conceptual framework for crop-based agri-food supply chain characterization under uncertainty
[EN] Crop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty.Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCA-RISE-2015Alemany DĂaz, MDM.; Esteso, A.; Ortiz Bas, Ă.; HernĂĄndez Hormazabal, JE.; FernĂĄndez, A.; Garrido, A.; Martin, J.... (2021). A conceptual framework for crop-based agri-food supply chain characterization under uncertainty. Studies in Systems, Decision and Control. 280:19-33. https://doi.org/10.1007/978-3-030-51047-3_2S1933280Taylor, D.H., Fearne, A.: Towards a framework for improvement in the management of demand in agri-food supply chains. Supply Chain Manage. 11, 379â384 (2006)Matopoulos, A., Vlachopoulou, M., Manthou, V., Manos, B.: A conceptual framework for supply chain collaboration: empirical evidence from the agri-food industry. Supply Chain Manage. 12, 177â186 (2007)Ahumada, O., Villalobos, J.R.: Application of planning models in the agri-food supply chain: a review. Eur. J. Oper. Res. 196, 1â20 (2009)Iakovou, E., Vlachos, D., Achillas, C., Anastasiadis, F.: A methodological framework for the design of green supply chains for the agrifood sector. Paper presented at the 2nd international conference on supply chains, Katerini, 5â7 Oct 2012Manzini, R., Accorsi, R.: The new conceptual framework for food supply chain assessment. J. Food Eng. 115, 251â263 (2013)Shukla, M., Jharkharia, S.: Agri-fresh produce supply chain management: a state-of-the-art literature review. Int. J. Oper. Prod. Manage. 33, 114â158 (2013)Lemma, Y., Kitaw, D., Gatew, G.: Loss in perishable food supply chain: an optimization approach literature review. Int. J. Sci. Eng. Res. 5, 302â311 (2014)Tsolakis, N.K., Keramydas, C.A., Toka, A.K., Aidonis, D.A., Iakovou, E.T.: Agrifood supply chain management: a comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 120, 47â64 (2014)Van der Vorst, J.G., Da Silva, C.A., Trienekens, J.H.: Agro-industrial Supply Chain Management: Concepts and Applications. FAO (2007)Hernandez, J., Mortimer, M., Patelli, E., Liu, S., Drummond, C., Kehr, E., Calabrese, N., Iannacone, R., Kacprzyk, J., Alemany, M.M.E., Gardner, D.: RUC-APS: enhancing and implementing knowledge based ICT solutions within high risk and uncertain conditions for agriculture production systems. In: 11th International Conference on Industrial Engineering and Industrial Management, Valencia, Spain (2017)Miles, M.B., Huberman, A.M.: Qualitative Data Analysis: An Expanded Sourcebook. Sage Publications, Thousand Oaks (1994)Alemany, M.M.E., AlarcĂłn, F., Lario, F.C., Boj, J.J.: An application to support the temporal and spatial distributed decision-making process in supply chain collaborative planning. Comput. Ind. 62, 519â540 (2011)Teimoury, E., Nedaei, H., Ansari, S., Sabbaghi, M.: A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: a system dynamics approach. Comput. Electron. Agric. 93, 37â45 (2013)Kusumastuti, R.D., van Donk, D.P., Teunter, R.: Crop-related harvesting and processing planning: a review. Int. J. Prod. Econ. 174, 76â92 (2016)Zhang, W., Wilhelm, W.E.: OR/MS decision support models for the specialty crops industry: a literature review. Ann. Oper. Res. 190, 131â148 (2011)Grillo, H., Alemany, M.M.E., Ortiz, A.: A review of mathematical models for supporting the order promising process under lack of homogeneity in product and other sources of uncertainty. Comput. Ind. Eng. 91, 239â261 (2016)Blanco, A.M., Masini, G., Petracci, N., Bandoni, J.A.: Operations management of a packaging plant in the fruit industry. J. Food Eng. 70, 299â307 (2005)Grillo, H., Alemany, M.M.E., Ortiz, A., Fuertes-Miquel, V.S.: Mathematical modelling of the order-promising process for fruit supply chains considering the perishability and subtypes of products. Appl. Math. Model. 49, 255â278 (2017)Verdouw, C.N., Beulens, A.J.M., Trienekens, J.H., Wolferta, J.: Process modelling in demand-driven supply chains: a reference model for the fruit industry. Comput. Electron. Agric. 73, 174â187 (2010)Amorim, P., GĂŒnther, H., Almada-Lobo, B.: Multi-objective integrated production and distribution planning of perishable products. Int. J. Prod. Econ. 138, 89â101 (2012)Nahmias, S.: Perishable inventory theory: a review. Oper. Res. 30, 680â708 (1982)Mowat, A., Collins, R.: Consumer behavior and fruit quality: supply chain management in an emerging industry. Supply Chain Manage. 5, 45â54 (2000)Kazaz, B., Webster, S.: The impact of yield-dependent trading costs on pricing and production planning under supply uncertainty. M&SOM Manuf. Serv. Oper. Manage. 13, 404â417 (2011)Van der Vorst, J.G.: Effective food supply chains: generating, modelling and evaluating supply chain scenarios (2000)Fuertes-Miquel, V.S., Cuenca, L., Boza, A., Guyon, C., Alemany, M.M.E.: Conceptual framework for the characterization of vegetable breton supply chain sustainability in an uncertain context. In: 12th International Conference on Industrial Engineering and Industrial Management, XXII Congreso de IngenierĂa de OrganizaciĂłn, Girona, Spain, 12â13 July 2018Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., Ward, P.J.: Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477â489 (2012)Hoekstra, S., Romme, J.: Integral Logistic Structures: Developing Customer-Oriented Goods Flow. Industrial Press Inc., New York (1992)Borodin, V., Bourtembourg, J., Hnaien, F., Labadie, N.: Handling uncertainty in agricultural supply chain management: a state of the art. Eur. J. Oper. Res. 254, 348â359 (2016)Handayati, Y., Simatupang, T.M., Perdana, T.: Agri-food supply chain coordination: the state-of-the-art and recent developments. Logist. Res. 8, 1â15 (2015)Mintzberg, H.: The Structuring of Organisations. Prentice-Hall, Upper Saddle River (1979)Keuning, D.: Grondslagen Van Het Management. Stenfert Kroese, Houten (1995) (in Dutch)Esteso, A., Alemany, M.M.E., Ortiz, A.: Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. Int. J. Prod. Res. (2018)Backus, G.B.C., Eidman, V.R., Dijkhuizen, A.A.: Farm decision making under risk and uncertainty. Neth. J. Agr. Sci. 45, 307â328 (1997)Esteso, A., Alemany, M.M.E., Ortiz, A.: Conceptual framework for managing uncertainty in a collaborative agri-food supply chain context. In: IFIP Advances in Information and Communication Technology, vol. 506, pp. 715â724 (2017)Mundi, I., Alemany, M.M.E., Poler, R., Fuertes-Miquel, V.S.: Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model. Int. J. Prod. Res. (2019)Grillo, H., Alemany, M.M.E., Ortiz, A., De Baets, B.: Possibilistic compositions and state functions: application to the order promising process for perishables. Int. J. Prod. Res. (2019)Soto-Silva, W.E., Nadal-Roig, E., GonzĂĄlez-Araya, M.C., Pla-Aragones, L.M.: Operational research models applied to the fresh fruit supply chain. Eur. J. Oper. Res. 251, 345â355 (2016)Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S.: Competitive supply chain network design: an overview of classifications, models, solution techniques and applications. Omega 45, 92â118 (2014)Banasik, A., Bloemhof-Ruwaard, J.M., Kanellopoulos, A., Claassen, G.D.H., van der Vorst, J.G.: Multi-criteria decision making approaches for green supply chains: a review. Flex. Serv. Manuf. J. 1â31 (2016)Paam, P., Berretta, R., Heydar, M., Middleton, R.H., GarcĂa-Flores, R., Juliano, P.: Planning models to optimize the agri-fresh food supply chain for loss minimization: a review. In: Reference Module in Food Science (2016)Soysal, M., Bloemhof-Ruwaard, J.M., Meuwissen, M.P., van der Vorst, J.G.: A review on quantitative models for sustainable food logistics management. Int. J. Food Syst. Dyn. 3, 136â155 (2012
Conceptual Framework for Managing Uncertainty in a Collaborative Agri-Food Supply Chain Context
[EN] Agri-food supply chains are subjected to many sources of uncertainty. If these uncertainties are not managed properly, they can have a negative impact on the agri-food supply chain (AFSC) performance, its customers, and the environment. In this sense, collaboration is proposed as a possible solution to reduce it. For that, a conceptual framework (CF) for managing uncertainty in a collaborative context is proposed. In this context, this paper seeks to answer the following research questions: What are the existing uncertainty sources in the AFSCs? Can collaboration be used to reduce the uncertainty of AFSCs? Which elements can integrate a CF for managing uncertainty in a collaborative AFSC? The CF proposal is applied to the weather source of uncertainty in order to show its applicability.The first author acknowledges the partial support of the Program of Formation of University Professors of the Spanish Ministry of Education, Culture, and Sport (FPU15/03595). The other authors acknowledge the partial support of the Project 691249, RUC-APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems, funded by the EU under its funding scheme H2020-MSCA-RISE-2015.Esteso-Ălvarez, A.; Alemany DĂaz, MDM.; Ortiz Bas, Ă. (2017). Conceptual Framework for Managing Uncertainty in a Collaborative Agri-Food Supply Chain Context. IFIP Advances in Information and Communication Technology. 506:715-724. https://doi.org/10.1007/978-3-319-65151-4_64S715724506Taylor, D.H., Fearne, A.: Towards a framework for improvement in the management of demand in agri-food supply chains. Supply Chain Manag. Int. J. 11, 379â384 (2006)Matopoulos, A., Vlachopoulou, M., Manthou, V., Manos, B.: A conceptual framework for supply chain collaboration: empirical evidence from the agri-food industry. Supply Chain Manag. Int. J. 12, 177â186 (2007)Ahumada, O., Villalobos, J.R.: Application of planning models in the agri-food supply chain: a review. Eur. J. Oper. Res. 196, 1â20 (2009)Tsolakis, N.K., Keramydas, C.A., Toka, A.K., Aidonis, D.A., Iakovou, E.T.: Agrifood supply chain management: a comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 120, 47â64 (2014)van der Vorst, J.G., Da Silva, C.A., Trienekens, J.H.: Agro-industrial supply chain management: Concepts and applications. FAO (2007)Borodin, V., Bourtembourg, J., Hnaien, F., Kabadie, N.: Handling uncertainty in agricultural supply chain management: a state of the art. Eur. J. Oper. Res. 254, 348â359 (2016)van der Vorst, J.G.A.J., Beulens, A.J.M.: Identifying sources of uncertainty to generate supply chain redesign strategies. Int. J. Phys. Distrib. Logist. Manag. 32, 409â430 (2000)Klosa, E.: A concept of models for supply chain speculative risk analysis and management. J. Econ. Manag. 12, 45â59 (2013)Samson, S., Reneke, J.A., Wiecek, M.M.: A review of different perspectices on uncertainty and risk and an alternative modeling paradigm. Reliab. Eng. Syst. Saf. 94, 558â567 (2009)Backus, G.B.C., Eidman, V.R., Dijkhuizen, A.A.: Farm decision making under risk and uncertainty. Neth. J. Agric. Sci. 45, 307â328 (1997)van der Vorst, J.G.: Effective food supply chains; Generating, modelling and evaluating supply chain scenarios. (2000)Amorim, P., GĂŒnther, H.O., Almada-Lobo, B.: Multi-objective integrated production and distribution planning of perishable products. Int. J. Prod. Econ. 138, 89â101 (2012)Amorim, P., Meyr, H., Almeder, C., Almada-Lobo, B.: Managing perishability in production-distribution planning: a discussion and review. Flex. Serv. Manuf. 25, 389â413 (2013)Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarria, D., Menesatti, P.: A review on agri-food supply chain traceability by means of RFID technology. Food Bioprocess Technol. 6, 353â366 (2013)Pahl, J., Voss, S.: Integrating deterioration and lifetime constraints in production and supply chain planning: a survey. Eur. J. Oper. Res. 238, 654â674 (2014)Grillo, H., Alemany, M.M.E., Ortiz, A.: A review of Mathematical models for supporting the order promising process under Lack of Homogeneity in product and other sources of uncertainty. Comput. Ind. Eng. 91, 239â261 (2016)Zwietering, M.H., vanât Riet, K.: Modelling of the quality of food: optimization of a cooling chain. In: Management Studies and the Agri-business: Management of Agri-chains, Wageningen, The Netherlands, pp. 108â117 (1994)Akkerman, R., Farahani, P., Grunow, M.: Quality, safety and sustainability in food distribution: a review of quantitative operations management approaches and challenges. Spectrum 32, 863â904 (2010)Apaiah, R.K., Hendrix, E.M.T., Meerdink, G., Linnemann, A.R.: Qualitative methodology for efficient food chain design. Trends Food Sci. Technol. 16, 204â214 (2005)Lehmann, R.J., Reiche, R., Schiefer, G.: Future internet and the agri-food sector: State-of-the-art in literature and research. Comput. Electron. Agric. 89, 158â174 (2012)Kusumastuti, R.D., van Donk, D.P., Teunter, R.: Crop-related harvesting and processing planning: a review. Int. J. Prod. Econ. 174, 76â92 (2016)Dreyer, H.C., Strandhagen, J.O., Hvolby, H.H., Romsdal, A., Alfnes, E.: Supply chain strategies for speciality foods: a Norwegian case study. Prod. Plan. Control 27, 878â893 (2016)Baghalian, A., Rezapour, S., Farahani, R.Z.: Robust supply chain network design with service level against disruptions and demand uncertainties: a real-life case. Eur. J. Oper. Res. 227, 199â215 (2013)Aggarwal, S., Srivastava, M.K.: Towards a grounded view of collaboration in Indian agri-food supply chains: a qualitative investigation. Br. Food J. 115, 1085â1106 (2016)Teimoury, E., Nedaei, H., Ansari, S., Sabbaghi, M.: A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: a system dynamics approach. Comput. Electron. Agric. 93, 37â45 (2013)Opara, L.U.: Traceability in agriculture and food supply chain: a review of basic concepts, technological implications, and future prospects. J. Food Agric. Environ. 1, 101â106 (2003)Kruize, J.W., Wolfert, S., Goense, D., Scholten, H., Beulens, A., Veenstra, T.: Integrating ICT applications for farm business collaboration processes using Fl Space. In: 2014 Annual SRII Global Conference, pp. 232â240. IEEE (2014)Oriade, C.A., Dillon, C.R.: Developments in biophysical and bioeconomic simulation of agricultural systems: a review. Agric. Econ. 17, 45â58 (1997)Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks: value creation in a knowledge society. In: Wang, Kesheng, Kovacs, G.L., Wozny, Michael, Fang, Minglun (eds.) PROLAMAT 2006. IIFIP, vol. 207, pp. 26â40. Springer, Boston, MA (2006). doi: 10.1007/0-387-34403-9_4Prima Dania, W.A., Xing, K., Amer, Y.: Collaboration and sustainable agri-food supply chain: a literature review. MATEC Web Conf. 58 (2016)Simatupang, T.M., Sridharan, R.: The collaborative index: a measure for supply chain collaboration. Int. J. Phys. Distrib. Logist. Manag. 35, 44â62 (2005)Fischer, C., Hartmann, M., Reynolds, N., Leat, P., Revoredo-Giha, C., Henchion, M., Albisu, L.M., Gracia, A.: Factors influencing contractual choice and sustainable relationships in European agri-food supply chains. Eur. Rev. Agric. Econ. 36, 541â569 (2009
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Observation of associated near-side and away-side long-range correlations in âsNN=5.02ââTeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (ÎÏ) and pseudorapidity (Îη) are measured in âsNN=5.02ââTeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1ââÎŒb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Îη|<5) ânear-sideâ (ÎÏâŒ0) correlation that grows rapidly with increasing ÎŁETPb. A long-range âaway-sideâ (ÎÏâŒÏ) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Îη and ÎÏ) and ÎŁETPb dependence. The resultant ÎÏ correlation is approximately symmetric about Ï/2, and is consistent with a dominant cosâĄ2ÎÏ modulation for all ÎŁETPb ranges and particle pT
Patterns of perceived barriers to medical care in older adults: a latent class analysis
<p>Abstract</p> <p>Background</p> <p>This study examined multiple dimensions of healthcare access in order to develop a typology of perceived barriers to healthcare access in community-dwelling elderly. Secondary aims were to define distinct classes of older adults with similar perceived healthcare access barriers and to examine predictors of class membership to identify risk factors for poor healthcare access.</p> <p>Methods</p> <p>A sample of 5,465 community-dwelling elderly was drawn from the 2004 wave of the Wisconsin Longitudinal Study. Perceived barriers to healthcare access were measured using items from the Group Health Association of America Consumer Satisfaction Survey. We used latent class analysis to assess the constellation of items measuring perceived barriers in access and multinomial logistic regression to estimate how risk factors affected the probability of membership in the latent barrier classes.</p> <p>Results</p> <p>Latent class analysis identified four classes of older adults. Class 1 (75% of sample) consisted of individuals with an overall low level of risk for perceived access problems (No Barriers). Class 2 (5%) perceived problems with the availability/accessibility of healthcare providers such as specialists or mental health providers (Availability/Accessibility Barriers). Class 3 (18%) perceived problems with how well their providers' operations arise organized to accommodate their needs and preferences (Accommodation Barriers). Class 4 (2%) perceived problems with all dimension of access (Severe Barriers). Results also revealed that healthcare affordability is a problem shared by members of all three barrier groups, suggesting that older adults with perceived barriers tend to face multiple, co-occurring problems. Compared to those classified into the No Barriers group, those in the Severe Barrier class were more likely to live in a rural county, have no health insurance, have depressive symptomatology, and speech limitations. Those classified into the Availability/Accessibility Barriers group were more likely to live in rural and micropolitan counties, have depressive symptomatology, more chronic conditions, and hearing limitations. Those in the Accommodation group were more likely to have depressive symptomatology and cognitive limitations.</p> <p>Conclusions</p> <p>The current study identified a typology of perceived barriers in healthcare access in older adults. The identified risk factors for membership in perceived barrier classes could potentially assist healthcare organizations and providers with targeting polices and interventions designed to improve access in their most vulnerable older adult populations, particularly those in rural areas, with functional disabilities, or in poor mental health.</p
Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at âs=8TeV
The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fbâ1of data collected in protonâproton collisions at âs=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV
Magnitude, precision, and realism of depth perception in stereoscopic vision
Our perception of depth is substantially enhanced by the fact that we have binocular vision. This provides us with more precise and accurate estimates of depth and an improved qualitative appreciation of the three-dimensional (3D) shapes and positions of objects. We assessed the link between these quantitative and qualitative aspects of 3D vision. Specifically, we wished to determine whether the realism of apparent depth from binocular cues is associated with the magnitude or precision of perceived depth and the degree of binocular fusion. We presented participants with stereograms containing randomly positioned circles and measured how the magnitude, realism, and precision of depth perception varied with the size of the disparities presented. We found that as the size of the disparity increased, the magnitude of perceived depth increased, while the precision with which observers could make depth discrimination judgments decreased. Beyond an initial increase, depth realism decreased with increasing disparity magnitude. This decrease occurred well below the disparity limit required to ensure comfortable viewing
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
Performance of the ATLAS muon trigger in pp collisions at [Formula: see text] TeV
The performance of the ATLAS muon trigger system is evaluated with proton-proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8Â TeV. It is primarily evaluated using events containing a pair of muons from the decay of [Formula: see text] bosons. The efficiency of the single-muon trigger is measured for muons with transverse momentum [Formula: see text]Â GeV, with a statistical uncertainty of less than 0.01Â % and a systematic uncertainty of 0.6Â %. The [Formula: see text] range for efficiency determination is extended by using muons from decays of [Formula: see text] mesons, [Formula: see text] bosons, and top quarks. The muon trigger shows highly uniform and stable performance. The performance is compared to the prediction of a detailed simulation
- âŠ