37 research outputs found

    Hsp70 in mitochondrial biogenesis

    Get PDF
    The family of hsp70 (70 kilodalton heat shock protein) molecular chaperones plays an essential and diverse role in cellular physiology, Hsp70 proteins appear to elicit their effects by interacting with polypeptides that present domains which exhibit non-native conformations at distinct stages during their life in the cell. In this paper we review work pertaining to the functions of hsp70 proteins in chaperoning mitochondrial protein biogenesis. Hsp70 proteins function in protein synthesis, protein translocation across mitochondrial membranes, protein folding and finally the delivery of misfolded proteins to proteolytic enzymes in the mitochondrial matrix

    DNAJB12 and Hsp70 triage arrested intermediates of N1303K-CFTR for endoplasmic reticulum-associated autophagy

    Get PDF
    The transmembrane Hsp40 DNAJB12 and cytosolic Hsp70 cooperate on the endoplasmic reticulum's (ER) cytoplasmic face to facilitate the triage of nascent polytopic membrane proteins for folding versus degradation. N1303K is a common mutation that causes misfolding of the ion channel CFTR, but unlike F508del-CFTR, biogenic and functional defects in N1303K-CFTR are resistant to correction by folding modulators. N1303K is reported to arrest CFTR folding at a late stage after partial assembly of its N-terminal domains. N1303K-CFTR intermediates are clients of JB12-Hsp70 complexes, maintained in a detergent- soluble state, and have a relatively long 3-h half-life. ER-associated degradation (ERAD)- resistant pools of N1303K-CFTR are concentrated in ER tubules that associate with autophagy initiation sites containing WIPI1, FlP200, and LC3. Destabilization of N1303K-CFTR or depletion of JB12 prevents entry of N1303K-CFTR into the membranes of ER-connected phagophores and traffic to autolysosomes. In contrast, the stabilization of intermediates with the modulator VX-809 promotes the association of N1303K-CFTR with autophagy initiation machinery. N1303K-CFTR is excluded from the ER-exit sites, and its passage from the ER to autolysosomes does not require ER-phagy receptors. DNAJB12 operates in biosynthetically active ER microdomains to triage membrane protein intermediates in a conformation-specific manner for secretion versus degradation via ERAD or selective-ER-associated autophagy

    On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode

    Full text link
    A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun's surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving their nature. With this review, we gather the current state-of-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion of several remaining open questions in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for publicatio

    The Physical Processes of CME/ICME Evolution

    Get PDF
    As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    The Physical Processes of CME/ICME Evolution

    Get PDF

    Evaluating genetic susceptibility to Staphylococcus aureus bacteremia in African Americans using admixture mapping

    No full text
    The incidence of Staphylococcus aureus bacteremia (SAB) is significantly higher in African American (AA) than in European-descended populations. We used admixture mapping (AM) to test the hypothesis that genomic variations with different frequencies in European and African ancestral genomes influence susceptibility to SAB in AAs. A total of 565 adult AAs (390 cases with SAB; 175 age-matched controls) were genotyped for AM analysis. A case-only admixture score and a mixed χ 2 (1df) score (MIX) to jointly evaluate both single-nucleotide polymorphism (SNP) and admixture association (P<5.00e-08) were computed using MIXSCORE. In addition, a permutation scheme was implemented to derive multiplicity adjusted P-values (genome-wide 0.05 significance threshold: P<9.46e-05). After empirical multiplicity adjustment, one region on chromosome 6 (52 SNPs, P=4.56e-05) in the HLA class II region was found to exhibit a genome-wide statistically significant increase in European ancestry. This region encodes genes involved in HLA-mediated immune response and these results provide additional evidence for genetic variation influencing HLA-mediated immunity, modulating susceptibility to SAB. © 2017 Macmillan Publishers Limited. All rights reserved

    Application of electrochemical methods for studying steel corrosion in alkali‐activated materials

    Get PDF
    Alkali-activated materials (AAMs) are binders that can complement and partially substitute the current use of conventional cement. However, the present knowledge about how AAMs protect steel reinforcement in concrete elements is incomplete, and uncertainties exist regarding the application of electrochemical methods to investigate this issue. The present review by EFC WP11-Task Force ‘Corrosion of steel in alkali-activated materials’ demonstrates that important differences exist between AAMs and Portland cement, and between different classes of AAMs, which are mainly caused by differing pore solution compositions, and which affect the outcomes of electrochemical measurements. The high sulfide concentrations in blast furnace slag-based AAMs lead to distinct anodic polarisation curves, unusually low open circuit potentials, and low polarisation resistances, which might be incorrectly interpreted as indicating active corrosion of steel reinforcement. No systematic study of the influence of the steel–concrete interface on the susceptibility of steel to corrosion in AAMs is available. Less common electrochemical methods present an opportunity for future progress in the field
    corecore