41 research outputs found

    Timing manipulations reveal the lack of a causal link across timing of annual-cycle stages in a long-distance migrant

    Get PDF
    Organisms need to time their annual-cycle stages, like breeding and migration, to occur at the right time of the year. Climate change has shifted the timing of annual-cycle stages at different rates, thereby tightening or lifting time constraints of these annual-cycle stages, a rarely studied consequence of climate change. The degree to which these constraints are affected by climate change depends on whether consecutive stages are causally linked (scenario I) or whether the timing of each stage is independent of other stages (scenario II). Under scenario I, a change in timing in one stage has knock-on timing effects on subsequent stages, whereas under scenario II, a shift in the timing of one stage affects the degree of overlap with previous and subsequent stages. To test this, we combined field manipulations, captivity measurements and geolocation data. We advanced and delayed hatching dates in pied flycatchers (Ficedula hypoleuca) and measured how the timing of subsequent stages (male moult and migration) were affected. There was no causal effect of manipulated hatching dates on the onset of moult and departure to Africa. Thus, advancing hatching dates reduced the male moult–breeding overlap with no effect on the moult–migration interval. Interestingly, the wintering location of delayed males was more westwards, suggesting that delaying the termination of breeding carries over to winter location. Because we found no causal linkage of the timing of annual-cycle stages, climate change could shift these stages at different rates, with the risk that the time available for some becomes so short that this will have major fitness consequences

    Activity Patterns during Food Provisioning Are Affected by Artificial Light in Free Living Great Tits (Parus major)

    Get PDF
    Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds

    Genome-Wide Association Study of White Blood Cell Count in 16,388 African Americans: the Continental Origins and Genetic Epidemiology Network (COGENT)

    Get PDF
    Total white blood cell (WBC) and neutrophil counts are lower among individuals of African descent due to the common African-derived “null” variant of the Duffy Antigen Receptor for Chemokines (DARC) gene. Additional common genetic polymorphisms were recently associated with total WBC and WBC sub-type levels in European and Japanese populations. No additional loci that account for WBC variability have been identified in African Americans. In order to address this, we performed a large genome-wide association study (GWAS) of total WBC and cell subtype counts in 16,388 African-American participants from 7 population-based cohorts available in the Continental Origins and Genetic Epidemiology Network. In addition to the DARC locus on chromosome 1q23, we identified two other regions (chromosomes 4q13 and 16q22) associated with WBC in African Americans (P<2.5×10−8). The lead SNP (rs9131) on chromosome 4q13 is located in the CXCL2 gene, which encodes a chemotactic cytokine for polymorphonuclear leukocytes. Independent evidence of the novel CXCL2 association with WBC was present in 3,551 Hispanic Americans, 14,767 Japanese, and 19,509 European Americans. The index SNP (rs12149261) on chromosome 16q22 associated with WBC count is located in a large inter-chromosomal segmental duplication encompassing part of the hydrocephalus inducing homolog (HYDIN) gene. We demonstrate that the chromosome 16q22 association finding is most likely due to a genotyping artifact as a consequence of sequence similarity between duplicated regions on chromosomes 16q22 and 1q21. Among the WBC loci recently identified in European or Japanese populations, replication was observed in our African-American meta-analysis for rs445 of CDK6 on chromosome 7q21 and rs4065321 of PSMD3-CSF3 region on chromosome 17q21. In summary, the CXCL2, CDK6, and PSMD3-CSF3 regions are associated with WBC count in African American and other populations. We also demonstrate that large inter-chromosomal duplications can result in false positive associations in GWAS

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Results of post-hoc test for the interaction between treatment and period for female feeding rate (see also Figure 1).

    No full text
    <p>Results of post-hoc test for the interaction between treatment and period for female feeding rate (see also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0037377#pone-0037377-g001" target="_blank">Figure 1</a>).</p

    Feeding rate (number of visits to the nest per hour) for males and females in the second half of the nestling stage (nestlings of 9–16 days) per treatment (dark: black circles, light: grey diamonds).

    No full text
    <p>Feeding rate (number of visits to the nest per hour) for males and females in the second half of the nestling stage (nestlings of 9–16 days) per treatment (dark: black circles, light: grey diamonds).</p

    Timing manipulations reveal the lack of a causal link across timing of annual-cycle stages in a long-distance migrant

    No full text
    Organisms need to time their annual-cycle stages, like breeding and migration, to occur at the right time of the year. Climate change has shifted the timing of annual-cycle stages at different rates, thereby tightening or lifting time constraints of these annual-cycle stages, a rarely studied consequence of climate change. The degree to which these constraints are affected by climate change depends on whether consecutive stages are causally linked (scenario I) or whether the timing of each stage is independent of other stages (scenario II). Under scenario I, a change in timing in one stage has knock-on timing effects on subsequent stages, whereas under scenario II, a shift in the timing of one stage affects the degree of overlap with previous and subsequent stages. To test this, we combined field manipulations, captivity measurements and geolocation data. We advanced and delayed hatching dates in pied flycatchers (Ficedula hypoleuca) and measured how the timing of subsequent stages (male moult and migration) were affected. There was no causal effect of manipulated hatching dates on the onset of moult and departure to Africa. Thus, advancing hatching dates reduced the male moult–breeding overlap with no effect on the moult–migration interval. Interestingly, the wintering location of delayed males was more westwards, suggesting that delaying the termination of breeding carries over to winter location. Because we found no causal linkage of the timing of annual-cycle stages, climate change could shift these stages at different rates, with the risk that the time available for some becomes so short that this will have major fitness consequences

    Data from: Timing manipulations reveal the lack of a causal link across timing of annual-cycle stages in a long-distance migrant

    No full text
    Organisms need to time their annual-cycle stages, like breeding and migration, to occur at the right time of the year. Climate change has shifted the timing of annual-cycle stages at different rates, thereby tightening or lifting time constraints of these annual-cycle stages, a rarely studied consequence of climate change. The degree to which these constraints are affected by climate change depends on whether consecutive stages are causally linked (I) or whether the timing of each stage is independent of other stages (II). Under (I), a change in timing in one stage has knock-on timing effects on subsequent stages, whereas under (II) a shift in the timing of one stage affects the degree of overlap with previous and subsequent stages. For testing this we combined field manipulations, captivity measurements and geolocation data. We advanced and delayed hatching dates in pied flycatchers (Ficedula hypoleuca) and measured how the timing of subsequent stages (male moult and migration) were affected. There was no causal effect of manipulated hatching dates on the onset of moult and departure to Africa. Thus, advancing hatching dates reduced the male moult-breeding overlap with no effect on the moult-migration interval. Interestingly, the wintering location of delayed males was more westwards, suggesting that delaying the termination of breeding carries-over to winter location. Because we found no causal linkage of the timing of annual-cycle stages, climate change can shift these stages at different rates, with the risk that the time available for some become so short that this will have major fitness consequences

    Observation of Cosmic Microwave Background Polarization with BICEP

    No full text
    Background Imaging of Cosmic Extragalactic Polarization (BICEP) is a bolometric polarimeter that has been observing the cosmic microwave background (CMB) from the South Pole since January 2006. BICEP has been optimized to target the B-mode of the CMB polarization at degree angular scales, which is a sensitive probe of the energy scale of Inflation, and will also measure the polarization E-mode with high precision. The instrument's focal plane comprises 49 pairs of polarization-sensitive bolometers operating at 100 and 150 GHz, and the 25-cm aperture refractive optics provide degree-scale resolution over a 17-degree instantaneous field of view. The compact design enables exquisite control of instrumental polarization systematics. We report on the performance of the BICEP instrument and observations of the CMB and Galactic foreground emission from the first two seasons of operation. BICEP is funded by NSF/Office of Polar Programs, Caltech, JPL, and the estate of J. Robinson
    corecore