58 research outputs found

    Split First Dose Administration of Intravenous Daratumumab for the Treatment of Multiple Myeloma (MM) : Clinical and Population Pharmacokinetic Analyses

    Get PDF
    Introduction: Daratumumab, a human immunoglobulin Gκ monoclonal antibody targeting CD38, is approved as monotherapy and in combination with standard-of-care regimens for multiple myeloma. In clinical studies, the median durations of the first, second, and subsequent intravenous infusions of daratumumab were 7.0, 4.3, and 3.4 h, respectively. Splitting the first intravenous infusion of daratumumab over 2 days is an approved alternative dosing regimen to reduce the duration of the first infusion and provide flexibility for patients and healthcare providers. Methods: The feasibility of splitting the first 16-mg/kg infusion into two separate infusions of 8 mg/kg on Days 1 and 2 of the first treatment cycle was investigated in two cohorts [daratumumab, carfilzomib, and dexamethasone (D-Kd) and daratumumab, carfilzomib, lenalidomide, and dexamethasone (D-KRd)] of the phase 1b MMY1001 study. Additionally, a population pharmacokinetic (PK) analysis and simulations were used to compare the PK profiles of the split first dose regimen with the recommended single first dose regimens of daratumumab in previously approved indications. Results: In MMY1001, following administration of the second half of a split first dose on Cycle 1 Day 2, postinfusion median (range) daratumumab concentrations were similar between split first dose [D-Kd, 254.9 (125.8-435.5) µg/ml; D-KRd, 277.2 (164.0-341.8) µg/ml; combined, 256.8 (125.8-435.5) µg/ml] and single first dose [D-Kd, 319.2 (237.5-394.7) µg/ml]. At the end of weekly dosing, median (range) Cycle 3 Day 1 preinfusion daratumumab concentrations were similar between split first dose [D-Kd, 663.9 (57.7-1110.7) µg/ml; D-KRd, 575.1 (237.9-825.5) µg/ml; combined, 639.2 (57.7-1110.7) µg/ml] and single first dose [D-Kd, 463.2 (355.9-792.9) µg/ml]. The population PK simulations demonstrated virtually identical PK profiles after the first day of treatment for all approved indications and recommended dosing schedules of daratumumab. Conclusion: These data support the use of an alternative split first dose regimen of intravenous daratumumab for the treatment of MM. Trial Registration: ClinicalTrials.gov number, NCT01998971

    Split First Dose Administration of Intravenous Daratumumab for the Treatment of Multiple Myeloma (MM) : Clinical and Population Pharmacokinetic Analyses

    Get PDF
    Introduction: Daratumumab, a human immunoglobulin Gκ monoclonal antibody targeting CD38, is approved as monotherapy and in combination with standard-of-care regimens for multiple myeloma. In clinical studies, the median durations of the first, second, and subsequent intravenous infusions of daratumumab were 7.0, 4.3, and 3.4 h, respectively. Splitting the first intravenous infusion of daratumumab over 2 days is an approved alternative dosing regimen to reduce the duration of the first infusion and provide flexibility for patients and healthcare providers. Methods: The feasibility of splitting the first 16-mg/kg infusion into two separate infusions of 8 mg/kg on Days 1 and 2 of the first treatment cycle was investigated in two cohorts [daratumumab, carfilzomib, and dexamethasone (D-Kd) and daratumumab, carfilzomib, lenalidomide, and dexamethasone (D-KRd)] of the phase 1b MMY1001 study. Additionally, a population pharmacokinetic (PK) analysis and simulations were used to compare the PK profiles of the split first dose regimen with the recommended single first dose regimens of daratumumab in previously approved indications. Results: In MMY1001, following administration of the second half of a split first dose on Cycle 1 Day 2, postinfusion median (range) daratumumab concentrations were similar between split first dose [D-Kd, 254.9 (125.8-435.5) µg/ml; D-KRd, 277.2 (164.0-341.8) µg/ml; combined, 256.8 (125.8-435.5) µg/ml] and single first dose [D-Kd, 319.2 (237.5-394.7) µg/ml]. At the end of weekly dosing, median (range) Cycle 3 Day 1 preinfusion daratumumab concentrations were similar between split first dose [D-Kd, 663.9 (57.7-1110.7) µg/ml; D-KRd, 575.1 (237.9-825.5) µg/ml; combined, 639.2 (57.7-1110.7) µg/ml] and single first dose [D-Kd, 463.2 (355.9-792.9) µg/ml]. The population PK simulations demonstrated virtually identical PK profiles after the first day of treatment for all approved indications and recommended dosing schedules of daratumumab. Conclusion: These data support the use of an alternative split first dose regimen of intravenous daratumumab for the treatment of MM. Trial Registration: ClinicalTrials.gov number, NCT01998971

    Cavity QED analog of the harmonic-oscillator probability distribution function and quantum collapses

    Get PDF
    We establish a connection between the simple harmonic oscillator and a two-level atom interacting with resonant, quantized cavity and strong driving fields, which suggests an experiment to measure the harmonic-oscillator's probability distribution function. To achieve this, we calculate the Autler-Townes spectrum by coupling the system to a third level. We find that there are two different regions of the atomic dynamics depending on the ratio of the: Rabi frequency Omega (c) of the cavity field to that of the Rabi frequency Omega of the driving field. For Omega (c

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Pharmacokinetics and Exposure–Response Analyses of Daratumumab in Combination Therapy Regimens for Patients with Multiple Myeloma

    Get PDF
    Introduction: Daratumumab, a human IgG monoclonal antibody targeting CD38, has demonstrated activity as monotherapy and in combination with standard-of-care regimens in multiple myeloma. Population pharmacokinetic analyses were conducted to determine the pharmacokinetics of intravenous daratumumab in combination therapy versus monotherapy, evaluate the effect of patient- and disease-related covariates on drug disposition, and examine the relationships between daratumumab exposure and efficacy/safety outcomes. Methods: Four clinical studies of daratumumab in combination with lenalidomide/dexamethasone (POLLUX and GEN503); bortezomib/dexamethasone (CASTOR); pomalidomide/dexamethasone, bortezomib/thalidomide/dexamethasone, and bortezomib/melphalan/prednisone (EQUULEUS) were included in the analysis. Using various dosing schedules, the majority of patients (684/694) received daratumumab at a dose of 16 mg/kg. In GEN503, daratumumab was administered at a dose of 2 mg/kg (n = 3), 4 mg/kg (n = 3), 8 mg/kg (n = 4), and 16 mg/kg (n = 34). A total of 650 patients in EQUULEUS (n = 128), POLLUX (n = 282), and CASTOR (n = 240) received daratumumab 16 mg/kg. The exposure–efficacy and exposure–safety relationships examined progression-free survival (PFS) and selected adverse events (infusion-related reactions; thrombocytopenia, anemia, neutropenia, lymphopenia, and infections), respectively. Results: Pharmacokinetic profiles of daratumumab were similar between monotherapy and combination therapy. Covariate analysis identified no clinically important effects on daratumumab exposure, and no dose adjustments were recommended on the basis of these factors. Maximal clinical benefit on PFS was achieved for the majority of patients (approximately 75%) at the 16 mg/kg dose. No apparent relationship was observed between daratumumab exposure and selected adverse events. Conclusion: These data support the recommended 16 mg/kg dose of daratumumab and the respective dosing schedules in the POLLUX and CASTOR pivotal studies. Funding: Janssen Research & Development

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations

    Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector

    Get PDF
    A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0
    corecore