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Cavity QED analog of the harmonic-oscillator probability distribution function
and quantum collapses

Z. Ficek? and S. Swaih
IDepartment of Applied Mathematics and Theoretical Physics, The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland
°Department of Physics and Centre for Laser Science, The University of Queensland, Brisbane QLD 4072, Australia
(Received 10 January 2001; published 16 May 2001

We establish a connection between the simple harmonic oscillator and a two-level atom interacting with
resonant, quantized cavity and strong driving fields, which suggests an experiment to measure the harmonic-
oscillator’s probability distribution function. To achieve this, we calculate the Autler-Townes spectrum by
coupling the system to a third level. We find that there are two different regions of the atomic dynamics
depending on the ratio of the Rabi frequeri@y of the cavity field to that of the Rabi frequen€y of the
driving field. ForQ.<{Q and moderate coupling of the transition to the cavity mode the spectral peaks are
composed of multiplets. A quantized dressed-atom approach provides a simple explanation of the spectral
features and shows that the oscillations in the spectral components arise from the oscillations of the population
distribution in the dressed states. The observation of these features would provide evidence for the quantum
nature of the cavity field. The distribution is an analog of the harmonic-oscillator probability distribution
function, and should be experimentally observable. gk ) there is no Autler-Townes splitting and the
spectrum is composed of a single peak located at the frequency of the probe transition. We show that this effect
results from the collapse of the atom to the ground state, which has been predicted by Alsing, Cardimona, and
Carmichael[Phys. Rev. A45, 1793(1992] for a two-level atom in a lossless cavity.
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[. INTRODUCTION with widely differing linewidths. Depending on the detuning
of the cavity mode from the atomic resonance, the central or
With recent successful experiments in the laser coolingeven all three spectral components can be significantly nar-
and trapping of a single atom within a single mode of arowed[12]. For strong atom-cavity coupling, each Mollow
microscopic cavity[1], it is now possible to test theoretical triplet component is composed of a multiplet, whose detailed
predictions of quantum physi¢2] and the cavity quantum structure depends on the atom-cavity coupling strength, the
electrodynamic§CQED) of the strong interaction of atoms cavity and spontaneous-emission decay rates, and the
with single quanta of the radiation field. The fundamentalphoton-number distribution of the cavity fie[&,7]. More-
model of the atom-field interaction is the Jaynes-Cumming®ver, in the case of the lossless cavity and exact resonance of
model[3] consisting of an excited two-level atom strongly the cavity and the driving fields to the atomic transition fre-
coupled to a single mode of the radiation field. The modelquency, the atom can remain in its ground state resulting in
has been extensively studied and many interesting quantuthe disappearance of the atomic resonance fluores¢&@te
effects have been predicted and observed, among the most Recently, considerable interest in the study of the Jaynes-
well known of which are collapse and revival of the inver- Cummings model has been devoted to observing the signa-
sion[4], subnatural linewidthg5], fluorescence spectf,7],  tures of the discrete nature of field quanta in the atom-cavity
and nonclassical photon statisti®]. These features result interaction that are sensitive to the presence of single quanta
from the presence of a multiple exchange of photons bein the cavity mode. The most recent are experiments on the
tween the radiating atom and the cavity mode and occudetection of quantum Rabi oscillatiof$3], Fock states of
when the coupling strengths between the atom and the cavithe radiation field 14], and a quantum phase gafé]. How-
mode are larger than the damping rates of the system. ever, the basic signature of a discrete small number of pho-
The Jaynes-Cummings model has been extended to ifiens in the cavity mode is the dependence of the energy
clude spontaneous emission, cavity damping, and extern&pectrum of the Jaynes-Cummings model on the number of
driving fields. Two different configurations of atom driving photonsn. The energy spectrum is composed of a single
have been analyzed. In the first case the external field driveground =0) level, and a ladder of doublets separated by
the cavity mode[8,9], and in the second case the driving 7 wo. The intradoublet splitting is equal fog/n, wherew,
field couples to the atom through an auxiliary field, differentis the resonance frequency agés the atom-cavity coupling
than the cavity mod¢7,10]. The cases of strong and weak constant. The splitting is characterized By, the signature
atom-cavity couplings have been considered. In the case aff a discrete number of photons in the cavity mode. The
the atom driven through an auxiliary mode and weak atomsplitting of the lowest energy doublen€1), called the
cavity coupling the system behaves formally the same as imacuum Rabi splitting, has been observed experimentally
free space, but with significantly modified spontaneous{16], and a photon correlation spectroscopy technique in-
emission rates. For instance, the fluorescence spectrum ofvalving a weak multichromatic field has been proposed to
strongly driven atom is a triplet, as in free spddd], but measure the unequal splitting of the second and third
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H=Hy+Hju, 1)
where
n>— + t b
Ho=fhwy(a'ataa +S'S;) 2
0]
- is the unperturbed Hamiltonian, and
12 > Hin=V+V =fg(Sfa+a's])+%g. (Sfa +aS))

FIG. 1. Schematic diagram of a three-level atom driven by a ®
coherent laser field of the frequenay equal to the atomic transi- is the interaction between the atom and the fields, wiere
tion frequencyw,, and coupled to a cavity mode of the frequency anda, are the annihilation operators of the cavity and laser
W= WL modesg andg, are the atom-cavity and atom-laser coupling

constants, respectively, ai®f =|1)(2|, S; =|2)(1| are the
excited-state dOUble[ﬂ?] Since the Spllttlngs are Unequal, atomic raising and |Owering Operators of thB_|2> tran-
the absorption resonances of the multichromatic field will besjtion. In this section we neglect all damping effects.

proportional to _(\/ﬁf vn—1), wheren=1,2,... .These The eigenstates ofl, are the product statel$,N, ,n)
resonances vanish in the classical limitrof 1. =|iY®|N_ Y®|n), where|i) is an atomic statei&1,2), N

Another elementary system which is sensitive to the presis the number of photons in the laser mode, ani the
ence of single quanta is a particle confined in a pd&.  number of photons in the cavity mode. The staiel, ,n)
This system is qualitatively similar to a harmonic oscillator form an infinite ladder of sets of highly degenerate states of
whose position operator exhibits a discrete spectrum sucBnergies# (N, +n)w;,. We first diagonalize the Hamil-
that the probability of finding the particle at the dimension-tonjan consisting of the unperturbed Hamiltonian plus the
less positiort = (mw/#)"*x inside the box depends @and  interaction with the laser fieldd,=Hy+V, . This gives rise
the number of quanta. The probablllty is maximal in the to the S|ng|y dressed states that have the form
vicinity of the classical turning points of the harmonic-
oscillator eigenfunctiong, (&), i.e., for &,~=2+/n+3, or HiNL =, m=A[(NL+n) et Q]INL ), (4)

for energied &,|h wq. For|€|>|&,| the probability goes rap- _
. . N where Q=2g+(N,), [N, =,n)=|N, ,%)|n) and the|N,,
idly to zero, while foré<|&,| the probability is nonzero and ) are the c?oéveertiolnaLl two>-le\|/eILat02‘r|1 3ressed stEﬂé};

oscillates withé. The number of oscillations depends on inallv. including th Ki ; biain doubl
and reveals the discrete energy spectrum of the system ﬁ'”a. y, Including the wea Interactiov, we obtain doublet
* continuaEy 4. and eigenstate§N,d; ,\) which satisfy the

the classical limit of a large number of quanta1) the ) )

change in the number of oscillation withis unnoticeable. ~ €igenvalue equation
The harmonic-oscillator probability distribution is one of _ .

the fundamental quantities of quantum mechanics, and is dis- HIN.di )= Eng, ANdiA) (=12, ®)

cussed in almost all textbooks on the subject, yet it has never

been experimentally verified. In this paper we draw an analyvhere we use the label, to indicate dressed states,

ogy between this system and that of a strongly driven two- 1

level atom interacting with a quantized cavity mode, which En.d, ,)\zthler(—l)'(EQJr)\g , (6)
should permit the observation of this probability distribution. '

We investigate the Autler-Townes spectrum of a three-level " \

atom where one of the transitions is coupled to a single cav- _ _ PN

ity mode and is driven, through an auxiliary mode, by a IN.d, ’M_,Z‘l $n| (—1) V2 [N, )

strong coherent laser field. The cavity and the laser field
frequencies are assumed to be equal and resonant with tith
atomic transition frequency. We find that the spectrum con- )
tains the oscillatory signature of the probability distribution da(X)=(2m2"n1) " Y2 (x)e~ (12X, (8)
function of the harmonic oscillator.
whereN=N, +n is the total number of photons in the field
Il. THE DRIVEN CAVITY AND THE HARMONIC modes and\ is an arbitrary real number—{co <\ <) (cf.

21)).
OSCILLATOR [
The functions defined in E{8) are just the energy eigen-

We first consider a two-level atom with ground sti2¢  functions of the harmonic oscillator in the coordinate repre-
and excited statg¢l), with transition frequencyw;,. The  sentation, as discussed in almost all textbooks on quantum
transition|2)—|1) is coupled to a cavity mode and driven mechanics. We have thus established an intimate connection
through an auxiliary mode by a classical laser figlde Fig. between the driven two-level atom in a good cavity and the
1). We employ a dressed-state approach in which we quarkarmonic oscillator. This connection is further reinforced by
tize both the cavity and driving laser fields. The Hamiltoniannoting that the matrix elements of the cavity interactioin
of the system is terms of the singly dressed eigenstatesigfare
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z / _1 O 1). We assume that the dipole moments of the transitjops

/ % - c and,&32 are perpendicular to each other so that no correlation
e mmmmeea exists between the transitions. In the interaction picture, the
master equation of the system is

. b

i
az—g[H,p]JrchJrLap, (10)

O)L where

H=hA.a'a+hA,S S, +#A,SiS; +hg(S;a+a's))

%//% } +§Q(s;+s;)+gﬂp(sg+s;) (11)

. SR (@) is the Hamiltonian of the probed and driven atom-cavity sys-

%% ) tem in the frame rotating with the laser frequenay,

FIG. 2. Energy levels of the system. Each energy manifold is
composed of two continua of widths equal to the Rabi frequency ) o
Q. of the cavity field and separated by the Rabi frequefiogf the IS the damping operator of the cavity field, and
driving field.

1
Lep=3 k(2apa’—a'ap—pa'a) (12

1 - ot +o— +o—
1 Lapzzrl(zsl pS1 —S1 S p—pSS)) (13
<NLian|V|NLiam>:i§ﬁg(\/n+15n+1,m+ \/ﬁﬁnfl,m) 1
©) +5T3(285 S5 ~S5S5p— S5 5) (14)

where we have assumed negligible interaction between the .
+ and — manifolds, which is true when the laser Rabi fre-iS the damping operator for the atom. Hef¢ = w;— w_and
quency exceeds the cavity Rabi frequency. This matrix ida=w@i1,—w_ are the detunings of the cavity-mode fre-
identical to that which represents the position operator of théluencyw. and of the atomic transition frequenay, from
harmonic oscillator in the basis of the energy eigenstatethe driving field frequency, ; A= w3y~ w; is the detuning
[18]. In fact, it is shown in[22] that the eigenstates of the of the probe field from thé2) —|3) transition,S; =[3)(2],
position operator of the harmonic oscillator in the basis of itsS; =|2)(3| are the atomic dipole operators of tf& —|2)
energy eigenstates are just the functi¢8s transition, ({2,) is the Rabi frequency of the driving

From Egs.(6) and (7) we can easily predict the energy (probe field, and«,I';,I'5 are the cavity and spontaneous-
spectrum of the system. Sinaeis an arbitrary real number, emission damping rates.
analogous to the coordinate of the one-dimensional harmonic The master equatio(10) describes the time evolution of
oscillator, discrete energy levels of the systdmnotexist.  the atom plus cavity system and contains all the essential
In this case the energy spectrum of the system, shown in Figncoherent and coherent effects of atomic spontaneous emis-
2, is composed of an infinite ladder of doublet continua withsion, cavity damping, atom-cavity coupling, and the driving
interdoublet separatiom, and intradoublet splittind). field. The equation has been extensively employed to inves-

It is our major purpose here to suggest ways of measuringjgate the fundamentals of the CQED, and the theoretical
|#n(x)|?, the probability distribution function of the har- studies are usually performed in the so-called “bad cavity”
monic oscillatof{ 18]. One way of achieving this is to couple and “good cavity” limits. The limits are determined by two
the ground state to a third level which may be probed by aelations between the parametersc, andI';. The bad cav-
second, weak, tunable laser. This is considered in the nexty limit corresponds tac>g,I";, in which the cavity damp-

section, where we also introduce damping. ing dominates, whereas the good cavity limit wgkr «,I";
corresponds to a strong atom-cavity coupling in which the
IIl. CAVITY MODIFIED MASTER EQUATION atom-cavity interaction dominates over that leading to the
atomic and cavity decay.
We now consider a three-level atom with ground staje In this paper we are interested in the good cavity limit in

and two excited statgd) and|3). The transitior2)—|1) is  which the photon emitted by the atom into the cavity mode is
coupled to the cavity mode and driven through an auxiliarylikely to be repeatedly exchanged between these two systems
mode as before, but now the driving field is a classical |asebefore reaching the Stationary state. Moreover, we assume
field. The transition|2) —[3), which is not coupled to the that the Rabi frequency of the driving field is so strong that
cavity mode, is probed by a weak laser field that monitors

the cavity effects on the coherently driven transitieae Fig. Q> k'3, (15
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and the laser and cavity frequencies are resonant to the For high-field strengthsQ)>1";,I'5,«, an approximation

atomic transitionA,=A,=0. technique has been suggestéfwhich greatly simplifies the
Since the|2)—|1) transition is strongly driven by the damping term(21). In this approach, we define the new

laser field, it is convenient to work in the basis of the semi-(transformed density operator

classical dressed states of the transifia@]

1 B(t):e—(i/ﬁ)ﬁLtpe(i/h)ﬁLt, (22)
|d1>=ﬁ(|2>+|1>),

and find that the transformed density operator satisfies the

1 following master equation:
dyy=—7=(|2)—11)). 16
|d2) ﬁd )=11) (16) d |
~ i~ ~ ~ ~ ~
In the dressed-atom approach we express the atomic opera- ()=~ 3 [Hc(t) +Hp(t), p() ]+ Lep(t) + Lap(V),
torsS” in terms of dressed-state operat®s=|d;)(d;| as (23)
1
Sy :E(Ro_ Rt Ra), where
1 1
S :E(Ro_ R21+R1), Fu(t)= Eigﬁ[aT(RoeiACt_ Ryei(Act )t
1 -R i(AC—Q)I)_H C]
F = (Rgp+Ray), (17) 12° Gl
S \/E( 321 Ray)
whereRy= Ry~ Ry;. = _ Qp (1/2)i0t —(1/2)i 0t
Next, we substitute Eq17) into Eq.(10) and find that the Hp(t) = 2\/§(R32e T+ Rae THHe), (29
master equation can be written as
dp [ ~ and
a: - %[HC+HL+HpaP]+LCP+LaPa
-~ 1 ) o~ )
where Lap(t)= Zrl(RO_ Ry ™+ Ry M) p(t) (Ry— Ryge ™
S S o 1 . .
He=3igh[a(Ro— Rzt Ry —H.c], (18) + Ry M) — g 1R~ Ry M+ R, el M)
~ Qp X (R—R iQt+R 7iQt)~ t)— EF - t)
Hy=s 5 (Rezt RextHe), (19) (Ro=Razie™+Ryze ") p(t) = 5Tap(
242
L X (Ro— Ry ¥+ Ry ™)
H =% Aa'a+ QR ) (20) . . 1
- ¢ 2 0 X(RO_R21eIQt+ Rlzeilﬂt)‘*' Erg
and 1
1 X (Rog+ Ry ™) p(t) (Rgp+ Ry ') — 2ls
Lap= Zrl(RO_ R21+R12)p(Ro— Riat Ray) 1
L X (Raz+ Raze™ ) (Rygt Ryae')p(1) — 7 Tp(t)
— 2 '1(Ro=R12+ R21)(Ry—Ra1+ Rio)p _ -
8 X(Rgpt Rae ™ ) (Ryg+ Ry ™). (25

1
— 5 l1p(Ro—Ri2t Ry (Ro— R+ Ryp)

8 It is seen from Eqs(24) and(25) that certain terms of the

master equation are independent of time while others vary in
- = time with A., A,£Q, and =Q. Depending on the cavity
+ 2F3(R23+ R13)p(Re2t Ray) 4F3(R32+ Ra1)(Reg detuning, some of the oscillating terms may slowly vary in
1 time. Here we assume that,=0, and then dropping the
terms oscillating rapidly at- Q) and =2() the master equa-
+Rig)p— 7 T'sp(Razt Ran) (Rogt Rug). @) o3 reduces o a
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d. 1 - i~ . - - 1 1 , 1\
gP (V= Eg[aTRo—Roa.P(t)]— 7 [Hp(D,p(O]+Lep(t) P3d,= _[5 Pt STy +i Ap+ EQ) }Pad2
R3p(t)+ p(t)R3—2Rgp(t)R L Hy e~ 3 3
( ( ) p( ) 0 Op( ) O) _Egpgdz(a_a )+ﬁ(9d2d2_p33)+|—cp3d2-
I'1(RoR,1p (1) + p(1) RiRa— 2Ry 1p (1) Ry Equations(27) are still operators with respect to the cavity
field. Since the probe field is very weak, the populaﬁx@gis
~ o~ ~ much smaller than the populatiops. 4. andpg. 4. and we
- §F1(R21R12p(t)+p(t)R21R12—2R12p(t)R21) _ Pop PRy, _ Pdyd,
can ignore the effect ops3 on the evolution of the coher-
~ ~ ~ encespzq, and P3d,-
~ 213(RaiRiap() + p(1)Ra1R13~ 2R1a0(1)Ray) In the absence of the cavity, the density-matrix elements
(27) becomec numbers and it is easy to find that the steady-
- Zra(Rsszaz(t)+B(t)R32R23_2R23;(t)R32)- state populations; is given by
(26) .2 (Ta+ 3T 1)pa,a,
P33~ o
It should be pointed out here that the master equa@6his 8ls| $ (T3+ 3T)%+(A,— 3 0)?
diagonal in respect to the driving field, but nondiagonal in L~
respect to the cavity field. Therefore the secular approxima- (T's+ 2T1)pa,
tion used in the derivation of EG26) is valid only when the + 1k (28)

1 171.)2 1
Rabi frequency(.=2g+(n) of the cavity field is much (Tt 20"+ (Ap+ 2 Q)
smaller than the Rabi frequency of the driving field. In other
words, the cavity field produces oscillations which are muchVNich is the familiar Autler-Townes doublet. The spectrum
slower than those produced by the driving field. Whep 'S composed of two lines of_eqlual ||neW|_dth}s(F_33+ 2T,
~() the atomic dynamics can change dramatically, and w .nd located at the frequencies; (3. _The intensities of the
will address this point in Sec. VI. In the next section we will €S areé proportional to the populations of the dressed states

apply the master equatiof26) to calculate the Autler- and are equal whepq g, =pg,q,, While the intensities are

Townes spectrum for this system. unequal wherpy 4. # py.d..-
1¥1 2Y2
In the presence of the cavity, and in the photon-number
IV. THE AUTLER-TOWNES SPECTROSCOPY representation, we find that the coherenck, .

In Autler-Townes spectroscopy, the absorptive properties=(N|psq,|m) satisfies the recurrence relation
of a system are studied by monitoring the system with a
weak probe field coupled to an auxiliary level. The popula- 1 1
tion of the auxiliary level is measured as a function of the AnmXnmt Eg\/axn,mfl_ 2 9VM+1Xn mea
probe field frequency, or equivalently, one can measure the
coherence between the auxiliary level and one of the probed ~(dyd)
levels. We present arguments below which demonstrate that Fry(N+D)(M+D) X1 me1=—=ppm -+ (29
the dominant features of the Autler-Townes spectrum are 2\/—
determined by the populations of the dressed stales,

First we calculate the population of the staB as a where
function of the probe field detuning,. From the master 1 1 1 1
equation(26), we find that the equations of motion for the Anm==|T3+ 5 Fl) + S (n+m)+i| Ay— _Q)
population of the statg3) and the coherences between state 2 2
|3) and the dressed statfs;) and|d,) are given by (30
andp(dldl) <n|pd 4,/m). The recurrence relation for the co-

- ~ Q, - ~ ~ ~ ~
= —Tapast —=(psg. + Pad.+ Pa.3+ +Lopas,
Pss 3P33 2\/§(p3d1 P3d, T Pa;at Paya) T lepss herenceY, n=(n[psq,|M) has the same form as E¢R9)

(27 with 0——Q andd;—d.,.
In general, Eq(29) is a two-dimensional recurrence rela-
A—Zoll3 tion and reduces to a one-dimensional recurrence relation in
P2 P3d, the limit of vanishing cavity damping— 0. The coherences
Xn.m depend on the populathrLdldl) of the cavity-modified
dressed states and are also coupled to the “nondiagonal”
elementsXy, .1 and X1 m+1. In the lowest order of cou-

- 1 1 _
del:_ E F3+ Erl +1
1 QL
~59pau,(@—al)+ _2\/§(Pd1dl_P33)+ Lcpad,
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pling, in which we ignore the coupling of the diagonal ele- From Eq.(33) we find that the equations of motion for the
ments to the off-diagonal elements, the cohereXge, is  combinationsu andw are
given by

) 1
0. P u=—Eg[(a—a*)w—w(a—a’r)]JrLcu, (36)
=—t 7 (31)

x - )
"o 2 Anm

which is similar to the free-space case.
In the next approximation, we include the coupling of _ _
Xnm 10 Xnme1, and we find that near the resonantg Note thatu= Tr,;,m(p) is the reduced density operator of the

~10, and for small cavity damping, the coherence is givencavity field. _ _
by In the photon-number representation, the equations of mo-

tion for u, = (n|ulmy andw, ,=(n|w|m) are given by

.1 1
w=->gl(a-ahu-u(a-ah]-sTw+Lw. (37)

Q B(dldl)
X =P ”'mz : 1 T 1 = 1 g
mm 2g°n ' Uym=—=0Vn+1w + =g\VNWy_1m+ =gVmMw,
2\/5%(1_,3_"_%1—,1)_'_ g +|(Ap—%ﬂ) n,m Zg n+1m Zg n—1m 2g n,m—1
(T3+3Ty) 1
(32 = S9N Wy AN DM DUy 11
It is seen that the effect of the off-diagonal terms is to pro-
duce a power broadening of the Autler-Townes lines. Thus, 1

as in the case of free space, the major factor determining the — 5 k(N+MUym,

shape and intensities of the Autler-Townes lines is the popu-

lation distribution between the dressed states of the driven. 1 1 1

transition. We describe how to calculate these in the nextWnm= — §9Vn+ TUprim™ Eg\/ﬁunfl,m"' Eg\ﬁun,mﬂ
section.

1
V. POPULATION OF THE DRESSED STATES ~59VM+1Ug i+ oV (N+D(MFD)Wo g e
From the master equatid@6), we find that the equations 1 1
of motion for the populations of the dressed states are of the - 5K<n+ M)W m— §F1Wn,m- (39

form

. 1 1 It is seen from Eq.(38) that the diagonal elements
Pnzig[(a—aT)Pn— p(a—a’)]— Zrl(pll_ ) Unm(Wn ) are coupled to the off—diagqnal elements
Wi 1m(Un=1m) @Nd Wy - 1(Unm-1). By setting the left-
hand side of Eq(38) equal to zero we obtain the steady-state
(33) solutions of these equations. A straightforward manipulation
of Eq. (38) leads to the following six-term two-dimensional

. 1 .
p22=—59l(a- a")po—pafa—al)]- 211(P22— 1) recurrence relation:

+Lepaa,

+Lepoos G”vmz(n'm)"_Dn+1,m+1z(n+1'm+l)+Bo,m+1z(n'm+l)

_ o - . +B 1oz(n+l,m)_BO Z(n,m—l)_B Oz(n—l,m):O,
wherep;; =pdd,- Itis interesting to note that the equations of e m "

motion for the populations are decoupled from the equations (39
of motion for the coherences, which are given by where
. i o 3 y(n.m KN 0
p12= —ig(ap1a—p12 )_ZF1P12+ Lepiz, Z(nn) — G. =
W(n,m) ! n,m 0 KN+ %Fl '
: ) 3
p21=—19(apz—p2ia") —zl1partLepar (34) 0 gyn+m
B - 1
_ _ "M gyn+m 0
Thus, Eqs(33) and(34) form independent coupled pairs.
It is convenient to introduce the following combinations — Jnm 0
of the dressed-states populations: Dy m= , (40)
‘ 0 —KkynNm
Uu=putpa, _ _ _
with 2, nu, m=1. Note that the degeneracy in the cavity and
W=poo—p11. (35 driving field frequencies leads to a doubling of the dimension

063815-6



CAVITY QED ANALOG OF THE HARMONIC-. .. PHYSICAL REVIEW A 63 063815

0.1 T T T T T )
(=] T T T T T T T
[=]
0.08 | .
0.06 [ . 3r .
O{g oy
0.04 - a
[Te]
[=]
st 4
0.02 | . ©
I\ I‘\ l‘ Iy
| [} . \ 1 1
0 oy 1 S A 1 1 L 1
-60 -40 -20 0 20 40 60 k
o, o 1 L L
-80 -60 -40 -20 0 20 40 60 80
FIG. 3. The Autler-Townes spectrum fd2=80I"y, =3 oy
=0.1"y, and different atom-cavity couplinggg=0.01"; (solid B
line), g=1.57", (dashed ling FIG. 4. The Autler-Townes spectrum fofl=80I";, «

=0.01F1, ngo.ﬂ‘l, andg=2rl

of the dynamics of the system, in the sense that the diagon
elementsu, ,(w, ,) are not decoupled from the off-diagonal
elementsuy, 4 m(Wn n+m). TO Obtain the Autler-Townes ab-
sorption spectrum, we calculate the steady-state coheren
p3, from the recurrence relatio(29) with the populations
found from the recurrence relatioi39), and then find the
populationpz; as a function ofA .

%lorresponds to a larger number of photons in the cavity
mode,n=7. We see that the splitting of the spectral features

ting of the features is proportional tog2/h, i.e., the Rabi
frequency of the cavity field. Figure 5 shows the spectrum
for two different values of and g such that 2+/n= const.
Here we see that the number of peaks in the structures in-
VI. RESULTS AND DISCUSSION creases witn and the oscillations vanish for a large The

e . . case ofn>1 corresponds to the Autler-Townes spectrum of
In order to see the modifications in the dynamics of the

. ) . ) a two-level transition driven by two lasers of the same fre-
driven atomic tranS|t|.on produced by the cavity, we Concen'quencies[21].
trate on the strong field limit OQ%Fl'r@K' We employ The multipeak structure of the Autler-Townes spectrum
two separate approaches; In the first methoq, we .calculatet uld suggest that in the presence of the cavity the dressed
Autler-Townes spectrum in a truncated basis which assumes
that there is a small, fixed number of photons in the cavity
mode. These results of this approach are shown in Figs. 3-£
Recent experimentf23] have shown that it is possible to
produce Fock states in the one-atom maser with up to seve
photons present. In the second approach, we calculate th
spectrum assuming a basis set with a large number of pho
tons. Here the external driving field produces a photon num-
ber distribution in the cavity.

0.02

0.015
L}

0.01
L)

&
A. The case of a fixed number of photons in the cavity

In Fig. 3 we show the steady-state populatiofy as a
function of the detuning\,. Forg<k,I';, shown as a solid
line, the spectrum displays two peaks located-gt(). This
is the well-known Autler-Townes doublet consisting of two
lines of linewidth 3(I';+3I";) and separated by the Rabi L
frequencyﬂ of .the driving field. As the coupllr?g.constagt 60 -4'10 0 5 20 4'0 %0
increases the lines broaden and ¢or «,I";, split into mul- ST
tiplets. The width of the spectral lines and the number of !
peaks depend og, which determines the Rabi frequency of  FIG. 5. The Autler-Townes spectrum fr=80I'; and the other
the cavity field. In Fig. 4 we plot the spectrum f@  parameters chosen such thgt/n=const: g=0.66d";, n=36
=2I'y, «=0.00",, Q=80I'y, andI'3=0.1"4. This plot (solid line), g=2T"';, n=4 (dashed ling

0.005
L}
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stategd,) and|d,) split into multiplets. However, this is not T T
the case in the present system, as the fully quantized analysi
of Sec. Il demonstrates. There it was shown that the energy
level spectrum of the system was composed of an infinite
ladder of doublet continua with interdoublet separatiop
and intradoublet separatidd. The dressed-state eigenfunc-
tions were linear combinations of the eigenfunctiesgx)
of the harmonic oscillator.

Thus a weak laser field coupled to t/8 —|2) transition
will probe the steady-state population distribution in the con-
tinua induced by the cavity and driving laser fields. In order
to find the steady-state population of the dressed st&jes
we project the master equatigt0) onto |[N,d;,\) on the
right and(N,d; ,\| on the left. We make the secular approxi- !i
mation [20] valid for O>TI";,I'5, in which we ignore the JL AN JL
coupling of the populations to the coherences, and find tha 50 0 50
the “reduced” steady-state populations Py,

=3n(N,d; ,\|p|N,d; ,\) are

é A
n \Ei
The population is distributed equally between the continua of"reCt integration of the master equatiQhO)_. In this ap- _
ach we use the Fock state representation for the cavity

the dressed states and is spread across these states with RA®

weight function| ¢,(\/y/2)|2. Clearly the oscillations seen in field and.write th.e density matrix as a vector composec_i of
Figs. 3—5 result from the oscillatory distribution of the popu-the density-matrix elements. We solve this system of linear,

lation inside the continuum of the dressed states. The osciRrdinary, differential equations by using numerical methods
lations provide direct evidence of field quantization in theavailable for Matlal19].
cavity and their observation would provide a measurement of In the absence of the cavitg&0), Tr(p?) = 3 indicating
the probability distribution function of the harmonic oscilla- that the system is in a mixed state of the two dressed states
tor, with \/\/2 playing the role of the harmonic-oscillator |d1) and|d,). In the presence of the cavity and for smgll
coordinate. the state of the system becomes more mixed withp)r(
~0. This indicates that the system is in a mixed state with a
very large number of states. This is easy to understand if one
refers to Eq(7) which shows that the energy spectrum of the
system is composed of two continua, each containing an in-
The second approach has been used to obtain Fig. 6,
which shows the Autler-Townes spectrum fof)
=100";, k=0.1I"y, I';=0.1"y, and different g. This
spectrum has been obtained using a truncated basis of 7
number states. One sees that for srgathe spectrum is the
familiar Autler-Townes doublet. For moderagehe spectral
lines split into multiplets with the overall width of the fea- ®
tures equal to the Rabi frequency of cavity field. sf
=2g./(n), where(n) is the average number of photons in <~
the cavity mode. The width of the multiple structures in- =t 48
creases linearly witly indicating that the average number of
photons in the cavity mode is constant, independent).of
Surprisingly, for largeg the splitting disappears and the
Autler-Townes multiple doublet reduces to a single peak \
with linewidth approximately equal td';, located at the SN -
atomic transition frequency,,. We have found that there is ~C
a threshold value off at which the Autler-Townes splitting

p33
0.0003 0.0004

0.0001 0.0002

6]

FIG. 6. The Autler-Townes spectrum fd2=100";, «=I;
=0.1I"y, and differentg: g=0.01"; (solid line), g=3I"; (dotted
line), g=20I"; (dashed-dotted line

2

1
Po=5 (4

B. The case of a variable number of cavity photons
in the basis

2

6
===
~.

0

0.4
]
!

disappears. The threshold value correspondq e ().
In order to get a physical insight into the cancellation of
the Autler-Townes splitting, we plot in Fig. 7 the quantity

gl

30

Tr(p?) which provides information about the number of
states of the system and their purity. We find FY by

06381

FIG. 7. Tr(p?) as a function ofg for k=I'3=0.1; and O
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1.2 T T Is,N+1 > la,N+1 >
1 L
Is,N > la,N >
0.8 | -
aQ Is.N-1 > la.N-1 >
S osf o . .
0 FIG. 9. Superpositions states of the overlapping continua. The
o N solid arrows indicate the allowed spontaneous transitions.
0.4 \ L
\\ Consider two ex?remal states of the contifiad, ,\ 4
oz | \ | and|N,d,,\ iy Which overlap forQ).=Q. The degeneracy
' ‘\ in the energy of the two overlapping states leads to the fol-
\\ lowing linear superposition states
5 5 10 1
g/rl |SvN>:E(“\Ldlv)\max)"’|Nvd21)\min>)v
FIG. 8. Populations of the atomic bare states as a functian of
for the same parameters as in Fig.pé; (solid line), p;; (dashed 1
line). |avN>:E(|N’d1a)\max>_|Nid217\min>)- (43

finite number of states. Ag increases the purity remains |t is easily verified from Eqgs(42) and (43 that theonly

constant and ag~7.5 changes rapidly from the maximally nonzero transition moments are between the stieN
mixed state Trp?)=0 to a maximally pure state Ts{)  +p) and|s,N+p—1)

=1. Forg>7.5 the system independent @fremains in the
pure state. In Fig. 8 we plot the populations of the atomic - 1.
bare state$l) and|2) for the same parameters as in Fig. 7. (N+p,alu|s,N+p—1)= M2 (44)
We see that fog<7.5 the atomic states are equally popu-
lated and the population does not change vgthVheng wherep=0,1,2... . In Fig. 9 we plot the superposition
~7.5 the atom collapses into its ground state and remains istates and the allowed spontaneous transitions. It is clear
this state, independent gf from Fig. 9 that the population flows from the antisymmetric
Alsing et al. [10] have predicted that a two-level atom state to the symmetric state of the manifold below but cannot
located inside a lossless cavity can remain in its ground statescape from the symmetric state, resulting in the trapping of
even if is continuously driven by a coherent laser field. Theythe population in that state.
have explained this effect as arising from the destructive in- Using Egs(43) it is easy to show that the symmetric state
terference between the driving and the cavity fields whichcan be written as
cancels the effective driving of the atom. Here, we present an
alternative and more transparent explanation which involves
linear superpositions of two degenerate dressed states of the |S’N>:§n: Pn(Mmax/ \/§)|2,N—n,n>. (49
system. The degeneracy appears only whegr ().
According to Fig. 2, the continua are separated(by Thus, the trapping state of the system involves only the
— . and they start to overlap whe®.=(). In the case of ground state of the atom.
nonoverlapping continua the only nonvanishing dipole ma-
trix elements are between two neighboring manifolds and are VII. SUMMARY
iven b
? y We have demonstrated the relation between the harmonic
oscillator and a two-level atom coupled to a cavity mode and
driven by a resonant laser field. The properties of this system
have been investigated by connecting the ground state to a
. 1. third level, not coupled to the cavity, by a weak probe field,
(N,da N u[N=1d; N )=— FH128(N ), and calculating the Autler-Townes spectrum. In the strong-
coupling limit the components of the Autler-Townes doublet
1 are composed of multiplets, whose detailed structure de-
<N,d1,)\|ﬁ|N— 1d,,\")= §ﬁ125()\_7\')a pends on the atom-cavity coupling and the cavity and
spontaneous-emission damping rates. We have shown that
1 the multiplets do not correspond to any discrete energy levels
IV n_ == N of the system, but result from the oscillatory distribution of
(N.dz M uIN=1d; \")= 0NN (42 population inside the continuum of the dressed states.

- 1.
<N,dl,)\|,U«|N_l,d2,)\,>: §M125()\+7\,)a
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The oscillations, which are a signature of the quantum naturquency of the cavity field at which the Autler-Townes split-
of the cavity field, are a direct analog of the well-known ting disappears and the atom collapses to the ground state,
oscillations of the probability distribution function of the and interpreted it as a population trapping effect.

harmonic oscillator, and should be measurable for this sys-

tem. The probability distribution function of t_he ha_rmonlc ACKNOWLEDGMENT

oscillator has not yet been measured, and it is obviously of

great interest to observe this fundamental property. We have This research was supported by the United Kingdom En-
also shown that there is a threshold value for the Rabi fregineering and Physical Sciences Research Council.
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