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Cavity QED analog of the harmonic-oscillator probability distribution function
and quantum collapses
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We establish a connection between the simple harmonic oscillator and a two-level atom interacting with
resonant, quantized cavity and strong driving fields, which suggests an experiment to measure the harmonic-
oscillator’s probability distribution function. To achieve this, we calculate the Autler-Townes spectrum by
coupling the system to a third level. We find that there are two different regions of the atomic dynamics
depending on the ratio of the Rabi frequencyVc of the cavity field to that of the Rabi frequencyV of the
driving field. ForVc,V and moderate coupling of the transition to the cavity mode the spectral peaks are
composed of multiplets. A quantized dressed-atom approach provides a simple explanation of the spectral
features and shows that the oscillations in the spectral components arise from the oscillations of the population
distribution in the dressed states. The observation of these features would provide evidence for the quantum
nature of the cavity field. The distribution is an analog of the harmonic-oscillator probability distribution
function, and should be experimentally observable. ForVc>V there is no Autler-Townes splitting and the
spectrum is composed of a single peak located at the frequency of the probe transition. We show that this effect
results from the collapse of the atom to the ground state, which has been predicted by Alsing, Cardimona, and
Carmichael@Phys. Rev. A45, 1793~1992!# for a two-level atom in a lossless cavity.
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I. INTRODUCTION

With recent successful experiments in the laser coo
and trapping of a single atom within a single mode of
microscopic cavity@1#, it is now possible to test theoretica
predictions of quantum physics@2# and the cavity quantum
electrodynamics~CQED! of the strong interaction of atom
with single quanta of the radiation field. The fundamen
model of the atom-field interaction is the Jaynes-Cummi
model @3# consisting of an excited two-level atom strong
coupled to a single mode of the radiation field. The mo
has been extensively studied and many interesting quan
effects have been predicted and observed, among the
well known of which are collapse and revival of the inve
sion@4#, subnatural linewidths@5#, fluorescence spectra@6,7#,
and nonclassical photon statistics@8#. These features resu
from the presence of a multiple exchange of photons
tween the radiating atom and the cavity mode and oc
when the coupling strengths between the atom and the ca
mode are larger than the damping rates of the system.

The Jaynes-Cummings model has been extended to
clude spontaneous emission, cavity damping, and exte
driving fields. Two different configurations of atom drivin
have been analyzed. In the first case the external field dr
the cavity mode@8,9#, and in the second case the drivin
field couples to the atom through an auxiliary field, differe
than the cavity mode@7,10#. The cases of strong and wea
atom-cavity couplings have been considered. In the cas
the atom driven through an auxiliary mode and weak ato
cavity coupling the system behaves formally the same a
free space, but with significantly modified spontaneo
emission rates. For instance, the fluorescence spectrum
strongly driven atom is a triplet, as in free space@11#, but
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with widely differing linewidths. Depending on the detunin
of the cavity mode from the atomic resonance, the centra
even all three spectral components can be significantly
rowed @12#. For strong atom-cavity coupling, each Mollo
triplet component is composed of a multiplet, whose detai
structure depends on the atom-cavity coupling strength,
cavity and spontaneous-emission decay rates, and
photon-number distribution of the cavity field@6,7#. More-
over, in the case of the lossless cavity and exact resonan
the cavity and the driving fields to the atomic transition fr
quency, the atom can remain in its ground state resulting
the disappearance of the atomic resonance fluorescence@10#.

Recently, considerable interest in the study of the Jayn
Cummings model has been devoted to observing the sig
tures of the discrete nature of field quanta in the atom-ca
interaction that are sensitive to the presence of single qu
in the cavity mode. The most recent are experiments on
detection of quantum Rabi oscillations@13#, Fock states of
the radiation field@14#, and a quantum phase gate@15#. How-
ever, the basic signature of a discrete small number of p
tons in the cavity mode is the dependence of the ene
spectrum of the Jaynes-Cummings model on the numbe
photonsn. The energy spectrum is composed of a sin
ground (n50) level, and a ladder of doublets separated
\v0. The intradoublet splitting is equal to\gAn, wherev0
is the resonance frequency andg is the atom-cavity coupling
constant. The splitting is characterized byAn, the signature
of a discrete number of photons in the cavity mode. T
splitting of the lowest energy doublet (n51), called the
vacuum Rabi splitting, has been observed experiment
@16#, and a photon correlation spectroscopy technique
volving a weak multichromatic field has been proposed
measure the unequal splitting of the second and th
©2001 The American Physical Society15-1
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excited-state doublets@17#. Since the splittings are unequa
the absorption resonances of the multichromatic field will
proportional to (An2An21), where n51,2, . . . . These
resonances vanish in the classical limit ofn@1.

Another elementary system which is sensitive to the pr
ence of single quanta is a particle confined in a box@18#.
This system is qualitatively similar to a harmonic oscillat
whose position operator exhibits a discrete spectrum s
that the probability of finding the particle at the dimensio
less positionj5(mv/\)1/2x inside the box depends onj and
the number of quantan. The probability is maximal in the
vicinity of the classical turning points of the harmoni

oscillator eigenfunctionfn(j), i.e., for jn;62An1 1
2 , or

for energiesujnu\v0. For uju.ujnu the probability goes rap
idly to zero, while forj,ujnu the probability is nonzero and
oscillates withj. The number of oscillations depends onn
and reveals the discrete energy spectrum of the system
the classical limit of a large number of quanta (n@1) the
change in the number of oscillation withn is unnoticeable.

The harmonic-oscillator probability distribution is one
the fundamental quantities of quantum mechanics, and is
cussed in almost all textbooks on the subject, yet it has ne
been experimentally verified. In this paper we draw an an
ogy between this system and that of a strongly driven tw
level atom interacting with a quantized cavity mode, whi
should permit the observation of this probability distributio
We investigate the Autler-Townes spectrum of a three-le
atom where one of the transitions is coupled to a single c
ity mode and is driven, through an auxiliary mode, by
strong coherent laser field. The cavity and the laser fi
frequencies are assumed to be equal and resonant with
atomic transition frequency. We find that the spectrum c
tains the oscillatory signature of the probability distributi
function of the harmonic oscillator.

II. THE DRIVEN CAVITY AND THE HARMONIC
OSCILLATOR

We first consider a two-level atom with ground stateu2&
and excited stateu1&, with transition frequencyv12. The
transition u2&2u1& is coupled to a cavity mode and drive
through an auxiliary mode by a classical laser field~see Fig.
1!. We employ a dressed-state approach in which we qu
tize both the cavity and driving laser fields. The Hamiltoni
of the system is

FIG. 1. Schematic diagram of a three-level atom driven b
coherent laser field of the frequencyvL equal to the atomic transi
tion frequencyv12 and coupled to a cavity mode of the frequen
vc5vL.
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H5H01Hint , ~1!

where

H05\v12~a†a1aL
†aL1S1

1S1
2! ~2!

is the unperturbed Hamiltonian, and

Hint[V1VL5\g~S1
1a1a†S1

2!1\gL~S1
1aL1aL

†S1
2!

~3!

is the interaction between the atom and the fields, whera
andaL are the annihilation operators of the cavity and la
modes,g andgL are the atom-cavity and atom-laser coupli
constants, respectively, andS1

15u1&^2u, S1
25u2&^1u are the

atomic raising and lowering operators of theu1&2u2& tran-
sition. In this section we neglect all damping effects.

The eigenstates ofH0 are the product statesu i ,NL ,n&
5u i & ^ uNL& ^ un&, whereu i & is an atomic state (i 51,2), NL
is the number of photons in the laser mode, andn is the
number of photons in the cavity mode. The statesu i ,NL ,n&
form an infinite ladder of sets of highly degenerate states
energies\(NL1n)v12. We first diagonalize the Hamil-
tonian consisting of the unperturbed Hamiltonian plus
interaction with the laser field,H1[H01VL . This gives rise
to the singly dressed states that have the form

H1uNL6,n&5\@~NL1n!v126V#uNL6,n&, ~4!

where V52gA^NL&, uNL6,n&[uNL ,6&un& and theuNL ,
6& are the conventional two-level atom dressed states@20#.
Finally, including the weak interactionV, we obtain doublet
continuaEN,di ,l and eigenstatesuN,di ,l& which satisfy the
eigenvalue equation

HuN,di ,l&5EN,di ,luN,di ,l& ~ i 51,2!, ~5!

where we use the labeldi to indicate dressed states,

EN,di ,l5N\v121~21! i S 1

2
V1lgD , ~6!

uN,di ,l&5 (
n51

`

fnS ~21! i
l

A2
D u i ,N,n&, ~7!

with

fn~x!5~A2p2nn! !21/2Hn~x!e2(1/2)x2
, ~8!

whereN5NL1n is the total number of photons in the fiel
modes andl is an arbitrary real number (2`,l,`) ~cf.
@21#!.

The functions defined in Eq.~8! are just the energy eigen
functions of the harmonic oscillator in the coordinate rep
sentation, as discussed in almost all textbooks on quan
mechanics. We have thus established an intimate connec
between the driven two-level atom in a good cavity and
harmonic oscillator. This connection is further reinforced
noting that the matrix elements of the cavity interactionV in
terms of the singly dressed eigenstates ofH1 are

a
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CAVITY QED ANALOG OF THE HARMONIC- . . . PHYSICAL REVIEW A 63 063815
^NL6,nuVuNL6,m&56
1

2
\g~An11dn11,m1Andn21,m!

~9!

where we have assumed negligible interaction between
1 and — manifolds, which is true when the laser Rabi f
quency exceeds the cavity Rabi frequency. This matrix
identical to that which represents the position operator of
harmonic oscillator in the basis of the energy eigensta
@18#. In fact, it is shown in@22# that the eigenstates of th
position operator of the harmonic oscillator in the basis of
energy eigenstates are just the functions~8!.

From Eqs.~6! and ~7! we can easily predict the energ
spectrum of the system. Sincel is an arbitrary real number
analogous to the coordinate of the one-dimensional harm
oscillator, discrete energy levels of the systemdo notexist.
In this case the energy spectrum of the system, shown in
2, is composed of an infinite ladder of doublet continua w
interdoublet separationv12 and intradoublet splittingV.

It is our major purpose here to suggest ways of measu
ufn(x)u2, the probability distribution function of the har
monic oscillator@18#. One way of achieving this is to coupl
the ground state to a third level which may be probed b
second, weak, tunable laser. This is considered in the
section, where we also introduce damping.

III. CAVITY MODIFIED MASTER EQUATION

We now consider a three-level atom with ground stateu2&
and two excited statesu1& andu3&. The transitionu2&2u1& is
coupled to the cavity mode and driven through an auxili
mode as before, but now the driving field is a classical la
field. The transitionu2&2u3&, which is not coupled to the
cavity mode, is probed by a weak laser field that monit
the cavity effects on the coherently driven transition~see Fig.

FIG. 2. Energy levels of the system. Each energy manifold
composed of two continua of widths equal to the Rabi freque
Vc of the cavity field and separated by the Rabi frequencyV of the
driving field.
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1!. We assume that the dipole moments of the transitionsmW 12

andmW 32 are perpendicular to each other so that no correla
exists between the transitions. In the interaction picture,
master equation of the system is

dr

dt
52

i

\
@H,r#1Lcr1Lar, ~10!

where

H5\Dca
†a1\DaS1

1S1
21\DpS3

1S3
21\g~S1

1a1a†S1
2!

1
\

2
V~S1

11S1
2!1

\

2
Vp~S3

11S3
2! ~11!

is the Hamiltonian of the probed and driven atom-cavity s
tem in the frame rotating with the laser frequencyvL ,

Lcr5
1

2
k~2ara†2a†ar2ra†a! ~12!

is the damping operator of the cavity field, and

Lar5
1

2
G1~2S1

2rS1
12S1

1S1
2r2rS1

1S1
2! ~13!

1
1

2
G3~2S3

2rS3
12S3

1S3
2r2rS3

1S3
2! ~14!

is the damping operator for the atom. Here,Dc5vc2vL and
Da5v122vL are the detunings of the cavity-mode fr
quencyvc and of the atomic transition frequencyv12 from
the driving field frequencyvL ; Dp5v322vp is the detuning
of the probe field from theu2&2u3& transition,S3

15u3&^2u,
S3

25u2&^3u are the atomic dipole operators of theu3&2u2&
transition, V(Vp) is the Rabi frequency of the driving
~probe! field, andk,G1 ,G3 are the cavity and spontaneou
emission damping rates.

The master equation~10! describes the time evolution o
the atom plus cavity system and contains all the essen
incoherent and coherent effects of atomic spontaneous e
sion, cavity damping, atom-cavity coupling, and the drivi
field. The equation has been extensively employed to inv
tigate the fundamentals of the CQED, and the theoret
studies are usually performed in the so-called ‘‘bad cavit
and ‘‘good cavity’’ limits. The limits are determined by tw
relations between the parametersg, k, andG1. The bad cav-
ity limit corresponds tok@g,G1, in which the cavity damp-
ing dominates, whereas the good cavity limit withg@k,G1
corresponds to a strong atom-cavity coupling in which
atom-cavity interaction dominates over that leading to
atomic and cavity decay.

In this paper we are interested in the good cavity limit
which the photon emitted by the atom into the cavity mode
likely to be repeatedly exchanged between these two syst
before reaching the stationary state. Moreover, we ass
that the Rabi frequency of the driving field is so strong th

V@k,G1 ,G3 , ~15!
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and the laser and cavity frequencies are resonant to
atomic transition,Dc5Da50.

Since theu2&2u1& transition is strongly driven by the
laser field, it is convenient to work in the basis of the sem
classical dressed states of the transition@20#

ud1&5
1

A2
~ u2&1u1&),

ud2&5
1

A2
~ u2&2u1&). ~16!

In the dressed-atom approach we express the atomic op
tors Si

6 in terms of dressed-state operatorsRi j 5udi&^dj u as

S1
15

1

2
~R02R121R21!,

S1
25

1

2
~R02R211R12!,

S3
15

1

A2
~R321R31!, ~17!

whereR05R222R11.
Next, we substitute Eq.~17! into Eq.~10! and find that the

master equation can be written as

dr

dt
52

i

\
@H̃c1H̃L1H̃p ,r#1Lcr1L̃ar,

where

H̃c5
1

2
ig\@a†~R02R211R12!2H.c.#, ~18!

H̃p5
Vp

2A2
~R321R311H.c.!, ~19!

H̃L5\S Dca
†a1

1

2
VR0D , ~20!

and

L̃ar5
1

4
G1~R02R211R12!r~R02R121R21!

2
1

8
G1~R02R121R21!~R02R211R12!r

2
1

8
G1r~R02R121R21!~R02R211R12!

1
1

2
G3~R231R13!r~R321R31!2

1

4
G3~R321R31!~R23

1R13!r2
1

4
G3r~R321R31!~R231R13!. ~21!
06381
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For high-field strengths,V@G1 ,G3 ,k, an approximation
technique has been suggested@7# which greatly simplifies the
damping term~21!. In this approach, we define the ne
~transformed! density operator

r̃~ t !5e2( i /\)H̃Ltre( i /\)H̃Lt, ~22!

and find that the transformed density operator satisfies
following master equation:

d

dt
r̃~ t !52

i

\
@H̃c~ t !1H̃p~ t !,r̃~ t !#1Lcr̃~ t !1Lar̃~ t !,

~23!

where

H̃c~ t !5
1

2
ig\@a†~R0eiDct2R21e

i (Dc1V)t

2R12e
i (Dc2V)t!2H.c.#,

H̃p~ t !5
Vp

2A2
~R32e

(1/2)iVt1R31e
2(1/2)iVt1H.c.!, ~24!

and

L̃ar̃~ t !5
1

4
G1~R02R21e

iVt1R12e
2 iVt!r̃~ t !~R02R12e

2 iVt

1R21e
iVt!2

1

8
G1~R02R12e

2 iVt1R21e
iVt!

3~R02R21e
iVt1R12e

2 iVt!r̃~ t !2
1

8
G1r̃~ t !

3~R02R12e
iVt1R21e

iVt!

3~R02R21e
iVt1R12e

2 iVt!1
1

2
G3

3~R231R13e
iVt!r̃~ t !~R321R31e

2 iVt!2
1

4
G3

3~R321R31e
2 iVt!~R231R13e

iVt!r̃~ t !2
1

4
G3r̃~ t !

3~R321R31e
2 iVt!~R231R13e

iVt!. ~25!

It is seen from Eqs.~24! and~25! that certain terms of the
master equation are independent of time while others var
time with Dc , Dc6V, and 6V. Depending on the cavity
detuning, some of the oscillating terms may slowly vary
time. Here we assume thatDc50, and then dropping the
terms oscillating rapidly at6V and62V the master equa
tion ~23! reduces to
5-4
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d

dt
r̃~ t !5

1

2
g@a†R02R0a,r̃~ t !#2

i

\
@H̃p~ t !,r̃~ t !#1Lcr̃~ t !

2
1

8
G1„R0

2r̃~ t !1 r̃~ t !R0
222R0r̃~ t !R0…

2
1

8
G1„R12R21r̃~ t !1 r̃~ t !R12R2122R21r̃~ t !R12…

2
1

8
G1„R21R12r̃~ t !1 r̃~ t !R21R1222R12r̃~ t !R21…

2
1

4
G3„R31R13r̃~ t !1 r̃~ t !R31R1322R13r̃~ t !R31…

2
1

4
G3„R32R23r̃~ t !1 r̃~ t !R32R2322R23r̃~ t !R32….

~26!

It should be pointed out here that the master equation~26! is
diagonal in respect to the driving field, but nondiagonal
respect to the cavity field. Therefore the secular approxim
tion used in the derivation of Eq.~26! is valid only when the
Rabi frequencyVc52gA^n& of the cavity field is much
smaller than the Rabi frequency of the driving field. In oth
words, the cavity field produces oscillations which are mu
slower than those produced by the driving field. WhenVc
'V the atomic dynamics can change dramatically, and
will address this point in Sec. VI. In the next section we w
apply the master equation~26! to calculate the Autler-
Townes spectrum for this system.

IV. THE AUTLER-TOWNES SPECTROSCOPY

In Autler-Townes spectroscopy, the absorptive proper
of a system are studied by monitoring the system with
weak probe field coupled to an auxiliary level. The popu
tion of the auxiliary level is measured as a function of t
probe field frequency, or equivalently, one can measure
coherence between the auxiliary level and one of the pro
levels. We present arguments below which demonstrate
the dominant features of the Autler-Townes spectrum
determined by the populations of the dressed states,rdidi

.

First we calculate the population of the stateu3& as a
function of the probe field detuningDp . From the master
equation~26!, we find that the equations of motion for th
population of the stateu3& and the coherences between st
u3& and the dressed statesud1& and ud2& are given by

r̃3352G3r̃331
Vp

2A2
~ r̃3d1

1 r̃3d2
1 r̃d131 r̃d23!1Lcr̃33,

~27!

r̃3d1
52F1

2 S G31
1

2
G1D1 i S Dp2

1

2
V D G r̃3d1

2
1

2
gr̃3d1

~a2a†!1
Vp

2A2
~ r̃d1d1

2 r̃33!1Lcr̃3d1
,
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r̃3d2
52F1

2 S G31
1

2
G1D1 i S Dp1

1

2
V D G r̃3d2

2
1

2
gr̃3d2

~a2a†!1
Vp

2A2
~ r̃d2d2

2 r̃33!1Lcr̃3d2
.

Equations~27! are still operators with respect to the cavi
field. Since the probe field is very weak, the populationr̃33 is
much smaller than the populationsr̃d2d2

and r̃d1d1
and we

can ignore the effect ofr̃33 on the evolution of the coher
encesr̃3d1

and r̃3d2
.

In the absence of the cavity, the density-matrix eleme
~27! becomec numbers and it is easy to find that the stead
state populationr̃33 is given by

r̃335
Vp

2

8G3
F ~G31 1

2 G1!r̃d1d1

1
4 ~G31 1

2 G1!21~Dp2 1
2 V!2

1
~G31 1

2 G1!r̃d2d2

1
4 ~G31 1

2 G1!21~Dp1 1
2 V!2G , ~28!

which is the familiar Autler-Townes doublet. The spectru
is composed of two lines of equal linewidths,1

2 (G31 1
2 G1),

and located at the frequencies6 1
2 V. The intensities of the

lines are proportional to the populations of the dressed st
and are equal whenr̃d1d1

5 r̃d2d2
, while the intensities are

unequal whenr̃d1d1
Þr̃d2d2

.
In the presence of the cavity, and in the photon-num

representation, we find that the coherenceXn,m

5^nur̃3d1
um& satisfies the recurrence relation

An,mXn,m1
1

2
gAmXn,m212

1

2
gAm11Xn,m11

1kA~n11!~m11!Xn11,m115
Vp

2A2
r̃n,m

(d1d1) , ~29!

where

An,m5
1

2 S G31
1

2
G1D1

1

2
k~n1m!1 i S Dp2

1

2
V D

~30!

andr̃n,m
(d1d1)

5^nur̃d1d1
um&. The recurrence relation for the co

herenceYn,m5^nur̃3d2
um& has the same form as Eq.~29!

with V→2V andd1→d2.
In general, Eq.~29! is a two-dimensional recurrence rela

tion and reduces to a one-dimensional recurrence relatio
the limit of vanishing cavity dampingk→0. The coherences
Xn,m depend on the populationr̃n,m

(d1d1) of the cavity-modified
dressed states and are also coupled to the ‘‘nondiagon
elementsXn,m61 andXn11,m11. In the lowest order of cou-
5-5
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Z. FICEK AND S. SWAIN PHYSICAL REVIEW A63 063815
pling, in which we ignore the coupling of the diagonal el
ments to the off-diagonal elements, the coherenceXn,m is
given by

Xn,m5
Vp

2A2

r̃n,m
(d1d1)

An,m
, ~31!

which is similar to the free-space case.
In the next approximation, we include the coupling

Xn,m to Xn,m61, and we find that near the resonanceDp
' 1

2 V, and for small cavity damping, the coherence is giv
by

Xn,m5
Vp

2A2

r̃n,m
(d1d1)

1
2 ~G31 1

2 G1!1
2g2n

~G31 1
2 G1!

1 i ~Dp2 1
2 V!

.

~32!

It is seen that the effect of the off-diagonal terms is to p
duce a power broadening of the Autler-Townes lines. Th
as in the case of free space, the major factor determining
shape and intensities of the Autler-Townes lines is the po
lation distribution between the dressed states of the dri
transition. We describe how to calculate these in the n
section.

V. POPULATION OF THE DRESSED STATES

From the master equation~26!, we find that the equation
of motion for the populations of the dressed states are of
form

ṙ115
1

2
g@~a2a†!r112r11~a2a†!#2

1

4
G1~r112r22!

1Lcr11,
~33!

ṙ2252
1

2
g@~a2a†!r222r22~a2a†!#2

1

4
G1~r222r11!

1Lcr22,

wherer i i 5 r̃didi
. It is interesting to note that the equations

motion for the populations are decoupled from the equati
of motion for the coherences, which are given by

ṙ1252 ig~ar122r12a
†!2

3

4
G1r121Lcr12,

ṙ2152 ig~ar212r21a
†!2

3

4
G1r211Lcr21. ~34!

Thus, Eqs.~33! and ~34! form independent coupled pairs.
It is convenient to introduce the following combination

of the dressed-states populations:

u5r111r22,

w5r222r11. ~35!
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From Eq.~33! we find that the equations of motion for th
combinationsu andw are

u̇52
1

2
g@~a2a†!w2w~a2a†!#1Lcu, ~36!

ẇ52
1

2
g@~a2a†!u2u~a2a†!#2

1

2
G1w1Lcw. ~37!

Note thatu5Tratom(r) is the reduced density operator of th
cavity field.

In the photon-number representation, the equations of
tion for un,m5^nuuum& andwn,m5^nuwum& are given by

u̇n,m52
1

2
gAn11wn11,m1

1

2
gAnwn21,m1

1

2
gAmwn,m21

2
1

2
gAm11wn,m111kA~n11!~m11!un11,m11

2
1

2
k~n1m!un,m ,

ẇn,m52
1

2
gAn11un11,m1

1

2
gAnun21,m1

1

2
gAmun,m21

2
1

2
gAm11un,m111kA~n11!~m11!wn11,m11

2
1

2
k~n1m!wn,m2

1

2
G1wn,m . ~38!

It is seen from Eq. ~38! that the diagonal element
un,m(wn,m) are coupled to the off-diagonal elemen
wn61,m(un61,m) and wn,m61(un,m61). By setting the left-
hand side of Eq.~38! equal to zero we obtain the steady-sta
solutions of these equations. A straightforward manipulat
of Eq. ~38! leads to the following six-term two-dimensiona
recurrence relation:

Gn,mZ(n,m)1Dn11,m11Z(n11,m11)1B0,m11Z(n,m11)

1Bn11,0Z
(n11,m)2B0,mZ(n,m21)2Bn,0Z

(n21,m)50,

~39!

where

Z(n,n)5S u(n,m)

w(n,m)D , Gn,m5S kn 0

0 kn1 1
2 G1

D ,

Bn,m5S 0 gAn1m

gAn1m 0
D ,

Dn,m5S 2kAnm 0

0 2kAnm
D , ~40!

with (n,mun,m51. Note that the degeneracy in the cavity a
driving field frequencies leads to a doubling of the dimens
5-6
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of the dynamics of the system, in the sense that the diag
elementsun,n(wn,n) are not decoupled from the off-diagon
elementsun,n1m(wn,n1m). To obtain the Autler-Townes ab
sorption spectrum, we calculate the steady-state coher
r32 from the recurrence relation~29! with the populations
found from the recurrence relation~39!, and then find the
populationr33 as a function ofDp .

VI. RESULTS AND DISCUSSION

In order to see the modifications in the dynamics of
driven atomic transition produced by the cavity, we conc
trate on the strong field limit ofV@G1 ,G3 ,k. We employ
two separate approaches: In the first method, we calculate
Autler-Townes spectrum in a truncated basis which assu
that there is a small, fixed number of photons in the cav
mode. These results of this approach are shown in Figs. 3
Recent experiments@23# have shown that it is possible t
produce Fock states in the one-atom maser with up to se
photons present. In the second approach, we calculate
spectrum assuming a basis set with a large number of p
tons. Here the external driving field produces a photon nu
ber distribution in the cavity.

A. The case of a fixed number of photons in the cavity

In Fig. 3 we show the steady-state populationr33 as a
function of the detuningDp . For g!k,G1, shown as a solid
line, the spectrum displays two peaks located at6 1

2 V. This
is the well-known Autler-Townes doublet consisting of tw
lines of linewidth 1

2 (G31 1
2 G1) and separated by the Ra

frequencyV of the driving field. As the coupling constantg
increases the lines broaden and forg@k,G1, split into mul-
tiplets. The width of the spectral lines and the number
peaks depend ong, which determines the Rabi frequency
the cavity field. In Fig. 4 we plot the spectrum forg
52G1 , k50.01G1 , V580G1, and G350.1G1. This plot

FIG. 3. The Autler-Townes spectrum forV580G1 , k5G3

50.1G1, and different atom-cavity couplings:g50.01G1 ~solid
line!, g51.5G1 ~dashed line!.
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corresponds to a larger number of photons in the ca
mode,n57. We see that the splitting of the spectral featu
and the number of lines inside the structures increase w
increasingn. From Figs. 3 and 4 it is apparent that the sp
ting of the features is proportional to 2gAn, i.e., the Rabi
frequency of the cavity field. Figure 5 shows the spectr
for two different values ofn and g such that 2gAn5const.
Here we see that the number of peaks in the structures
creases withn and the oscillations vanish for a largen. The
case ofn@1 corresponds to the Autler-Townes spectrum
a two-level transition driven by two lasers of the same f
quencies@21#.

The multipeak structure of the Autler-Townes spectru
could suggest that in the presence of the cavity the dres

FIG. 4. The Autler-Townes spectrum forV580G1 , k
50.01G1 , G350.1G1, andg52G1.

FIG. 5. The Autler-Townes spectrum forV580G1 and the other
parameters chosen such thatgAn5const: g50.666G1 , n536
~solid line!, g52G1 , n54 ~dashed line!.
5-7
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statesud1& andud2& split into multiplets. However, this is no
the case in the present system, as the fully quantized ana
of Sec. II demonstrates. There it was shown that the ene
level spectrum of the system was composed of an infi
ladder of doublet continua with interdoublet separationv12
and intradoublet separationV. The dressed-state eigenfun
tions were linear combinations of the eigenfunctionsfn(x)
of the harmonic oscillator.

Thus a weak laser field coupled to theu3&2u2& transition
will probe the steady-state population distribution in the co
tinua induced by the cavity and driving laser fields. In ord
to find the steady-state population of the dressed states~8!
we project the master equation~10! onto uN,di ,l& on the
right and^N,di ,lu on the left. We make the secular approx
mation @20# valid for V@G1 ,G3, in which we ignore the
coupling of the populations to the coherences, and find
the ‘‘reduced’’ steady-state populations Pdi

5(N^N,di ,luruN,di ,l& are

Pdi
5

1

2UfnS l

A2
D U2

. ~41!

The population is distributed equally between the continua
the dressed states and is spread across these states w
weight functionufn(l/A2)u2. Clearly the oscillations seen i
Figs. 3–5 result from the oscillatory distribution of the pop
lation inside the continuum of the dressed states. The o
lations provide direct evidence of field quantization in t
cavity and their observation would provide a measuremen
the probability distribution function of the harmonic oscill
tor, with l/A2 playing the role of the harmonic-oscillato
coordinate.

B. The case of a variable number of cavity photons
in the basis

The second approach has been used to obtain Fig
which shows the Autler-Townes spectrum forV
5100G1 , k50.1G1 , G350.1G1, and different g. This
spectrum has been obtained using a truncated basis o
number states. One sees that for smallg the spectrum is the
familiar Autler-Townes doublet. For moderateg the spectral
lines split into multiplets with the overall width of the fea
tures equal to the Rabi frequency of cavity fieldVc

52gA^n&, where^n& is the average number of photons
the cavity mode. The width of the multiple structures i
creases linearly withg indicating that the average number
photons in the cavity mode is constant, independent og.
Surprisingly, for largeg the splitting disappears and th
Autler-Townes multiple doublet reduces to a single pe
with linewidth approximately equal toG3, located at the
atomic transition frequencyv12. We have found that there i
a threshold value ofg at which the Autler-Townes splitting
disappears. The threshold value corresponds toVc5V.

In order to get a physical insight into the cancellation
the Autler-Townes splitting, we plot in Fig. 7 the quanti
Tr(r2) which provides information about the number
states of the system and their purity. We find Tr(r2) by
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direct integration of the master equation~10!. In this ap-
proach we use the Fock state representation for the ca
field and write the density matrixr as a vector composed o
the density-matrix elements. We solve this system of line
ordinary, differential equations by using numerical metho
available for Matlab@19#.

In the absence of the cavity (g50), Tr(r2)5 1
2 indicating

that the system is in a mixed state of the two dressed st
ud1& and ud2&. In the presence of the cavity and for smallg
the state of the system becomes more mixed with Tr(r2)
'0. This indicates that the system is in a mixed state wit
very large number of states. This is easy to understand if
refers to Eq.~7! which shows that the energy spectrum of t
system is composed of two continua, each containing an

FIG. 6. The Autler-Townes spectrum forV5100G1 , k5G3

50.1G1, and differentg: g50.01G1 ~solid line!, g53G1 ~dotted
line!, g520G1 ~dashed-dotted line!.

FIG. 7. Tr(r2) as a function ofg for k5G350.1G1 and V
5100G1.
5-8
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finite number of states. Asg increases the purity remain
constant and atg'7.5 changes rapidly from the maximall
mixed state Tr(r2)50 to a maximally pure state Tr(r2)
51. Forg.7.5 the system independent ofg remains in the
pure state. In Fig. 8 we plot the populations of the atom
bare statesu1& and u2& for the same parameters as in Fig.
We see that forg,7.5 the atomic states are equally pop
lated and the population does not change withg. When g
'7.5 the atom collapses into its ground state and remain
this state, independent ofg.

Alsing et al. @10# have predicted that a two-level ato
located inside a lossless cavity can remain in its ground s
even if is continuously driven by a coherent laser field. Th
have explained this effect as arising from the destructive
terference between the driving and the cavity fields wh
cancels the effective driving of the atom. Here, we presen
alternative and more transparent explanation which invol
linear superpositions of two degenerate dressed states o
system. The degeneracy appears only whenVc>V.

According to Fig. 2, the continua are separated byV
2Vc and they start to overlap whenVc5V. In the case of
nonoverlapping continua the only nonvanishing dipole m
trix elements are between two neighboring manifolds and
given by

^N,d1 ,lumW uN21,d2 ,l8&5
1

2
mW 12d~l1l8!,

^N,d2 ,lumW uN21,d1 ,l8&52
1

2
mW 12d~l1l8!,

^N,d1 ,lumW uN21,d1 ,l8&5
1

2
mW 12d~l2l8!,

^N,d2 ,lumW uN21,d2 ,l8&52
1

2
mW 12d~l2l8!. ~42!

FIG. 8. Populations of the atomic bare states as a functiong
for the same parameters as in Fig. 7:r22 ~solid line!, r11 ~dashed
line!.
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Consider two extremal states of the continuauN,d1 ,lmax&
anduN,d2 ,lmin& which overlap forVc5V. The degeneracy
in the energy of the two overlapping states leads to the
lowing linear superposition states

us,N&5
1

A2
~ uN,d1 ,lmax&1uN,d2 ,lmin&),

ua,N&5
1

A2
~ uN,d1 ,lmax&2uN,d2 ,lmin&). ~43!

It is easily verified from Eqs.~42! and ~43! that theonly
nonzero transition moments are between the statesua,N
1p& and us,N1p21&

^N1p,aumW us,N1p21&5
1

4
mW 12, ~44!

where p50,1,2, . . . . In Fig. 9 we plot the superposition
states and the allowed spontaneous transitions. It is c
from Fig. 9 that the population flows from the antisymmet
state to the symmetric state of the manifold below but can
escape from the symmetric state, resulting in the trapping
the population in that state.

Using Eqs.~43! it is easy to show that the symmetric sta
can be written as

us,N&5(
n

fn~lmax/A2!u2,N2n,n&. ~45!

Thus, the trapping state of the system involves only
ground state of the atom.

VII. SUMMARY

We have demonstrated the relation between the harm
oscillator and a two-level atom coupled to a cavity mode a
driven by a resonant laser field. The properties of this sys
have been investigated by connecting the ground state
third level, not coupled to the cavity, by a weak probe fie
and calculating the Autler-Townes spectrum. In the stro
coupling limit the components of the Autler-Townes doub
are composed of multiplets, whose detailed structure
pends on the atom-cavity coupling and the cavity a
spontaneous-emission damping rates. We have shown
the multiplets do not correspond to any discrete energy le
of the system, but result from the oscillatory distribution
the population inside the continuum of the dressed sta

FIG. 9. Superpositions states of the overlapping continua.
solid arrows indicate the allowed spontaneous transitions.
5-9
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The oscillations, which are a signature of the quantum na
of the cavity field, are a direct analog of the well-know
oscillations of the probability distribution function of th
harmonic oscillator, and should be measurable for this s
tem. The probability distribution function of the harmon
oscillator has not yet been measured, and it is obviously
great interest to observe this fundamental property. We h
also shown that there is a threshold value for the Rabi
.
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quency of the cavity field at which the Autler-Townes spl
ting disappears and the atom collapses to the ground s
and interpreted it as a population trapping effect.

ACKNOWLEDGMENT

This research was supported by the United Kingdom E
gineering and Physical Sciences Research Council.
er
,

nd,

rly,

nd

ev.
F.

ical

rg,

B.
tum

J.
@1# J. Ye, D.W. Vernooy, and H.J. Kimble, Phys. Rev. Lett.83,
4987 ~1999!; A.C. Doherty, T.W. Lynn, C.J. Hood, and H.J
Kimble, Phys. Rev. A63, 013401~2001!.

@2# A. Whitaker, Prog. Quantum Electron.24, 1 ~2000!.
@3# E.T. Jaynes and F.W. Cummings, Proc. IEEE51, 89 ~1963!.
@4# J.H. Eberly, N.B. Narozhny, and J.I. Sanchez-Mondrag

Phys. Rev. Lett.44, 1323~1980!; P.L. Knight and P.M. Rad-
more, Phys. Lett.90A, 342~1982!; G. Rempe, H. Walther, and
N. Klein, Phys. Rev. Lett.58, 353 ~1987!.

@5# H.J. Carmichael, R.J. Brecha, M.G. Raizen, H.J. Kimble, a
P.R. Rice, Phys. Rev. A40, 5516~1989!.

@6# J.I. Cirac, H. Ritsch, and P. Zoller, Phys. Rev. A44, 4541
~1991!.

@7# T. Quang and H. Freedhoff, Phys. Rev. A47, 2285~1993!; H.
Freedhoff and T. Quang, J. Opt. Soc. Am. B10, 1337~1993!;
Phys. Rev. Lett.72, 474 ~1994!.

@8# R.J. Brecha, P.R. Rice, and M. Xiao, Phys. Rev. A59, 2392
~1999!; J.P. Clemens and P.R. Rice,ibid. 61, 063810~2000!.

@9# C.M. Savage, Phys. Rev. Lett.60, 1828 ~1988!; M. Lindberg
and C.M. Savage, Phys. Rev. A38, 5182~1988!; C.M. Savage,
Phys. Rev. Lett.63, 1376 ~1989!; P. Alsing and H.J. Car-
michael, Quantum Opt.3, 13 ~1991!; P.M. Alsing, D.-S. Guo,
and H.J. Carmichael, Phys. Rev. A45, 5135 ~1992!; H. Nha,
Y.-T. Chough, and K. An,ibid. 62, 021801~R! ~2000!.

@10# P.M. Alsing, D.A. Cardimona, and H.J. Carmichael, Ph
Rev. A 45, 1793~1992!.

@11# B.R. Mollow, Phys. Rev.188, 1969~1969!.
@12# M. Lewenstein, T.W. Mossberg, and R.J. Glauber, Phys. R

Lett. 59, 775 ~1987!; M. Lewenstein and T.W. Mossberg
Phys. Rev. A37, 2048~1988!; P. Zhou and S. Swain,ibid. 58,
1515 ~1998!.

@13# M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagle
J.M. Raimond, and S. Haroche, Phys. Rev. Lett.76, 1800
~1996!.
,

d

.

v.

@14# B.T.H. Varcoe, S. Brattke, B.G. Englert, and H. Walther, Las
Phys.10, 1 ~2000!; B.T.H. Varcoe, S. Brattke, M. Weldinger
and H. Walther, Nature~London! 403, 743 ~2000!; S. Brattke,
B.T.H. Varcoe, and H. Walther, Phys. Rev. Lett.86, 3534
~2001!.

@15# Q.A. Turchette, Phys. Rev. Lett.75, 4710 ~1995!; A. Raus-
chenbeutel, G. Nogues, S. Osnaghi, P. Brune, J.M. Raimo
and S. Haroche,ibid. 83, 5166~1999!.

@16# J.I. Sanchez-Mondragon, N.B. Narozhny, and J.H. Ebe
Phys. Rev. Lett.51, 550 ~1983!; Y. Kaluzny, P. Goy, M.
Gross, J.N. Raimond, and S. Haroche,ibid. 51, 1175 ~1983!;
M.G. Raizen, R.J. Thompson, R.J. Brecha, H.J. Kimble, a
H.J. Carmichael,ibid. 63, 240 ~1989!; Y. Zhu, D.J. Gauthier,
S.E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg,ibid.
64, 2499~1990!.

@17# H.J. Carmichael, P. Kochan, and B.C. Sanders, Phys. R
Lett. 77, 631 ~1996!; B.C. Sanders, H.J. Carmichael, and B.
Wielinga, Phys. Rev. A55, 1358 ~1997!; L. Horvath, B.C.
Sanders, and B.F. Wielinga, J. Opt. B: Quantum Semiclass
Opt. 1, 446 ~1999!.

@18# See, e.g., A.S. Davydov,Quantum Mechanics~Pergamon
Press, Oxford, 1965!, p. 116.

@19# S.M. Tan, J. Opt. B: Quantum Semiclassical Opt.1, 424
~1999!.

@20# C. Cohen-Tannoudji and S. Reynaud, J. Phys. B10, 345
~1977!; C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynbe
Atom-Photon Interactions~Wiley, New York, 1992!.

@21# H.S. Freedhoff and Z. Ficek, Phys. Rev. A55, 1234 ~1997!;
A.D. Greentree, C. Wei, S.A. Holmstrom, J.P.D. Martin, N.
Manson, K.R. Catchpole, and C. Savage, J. Opt. B: Quan
Semiclassical Opt.1, 240 ~1999!.
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