261 research outputs found
Skp, Cullin, F-box (SCF)-Met30 and SCF-Cdc4-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A for Chromosomal Stability in Budding Yeast
Restricting the localization of the histone H3 variant CENP-A (Cse4 in yeast, CID in flies) tocentromeres is essential for faithful chromosome segregation. Mislocalization of CENP-Aleads to chromosomal instability (CIN) in yeast, fly and human cells. Overexpression andmislocalization of CENP-A has been observed in many cancers and this correlates withincreased invasiveness and poor prognosis. Yet genes that regulate CENP-A levels andlocalization under physiological conditions have not been defined. In this study we used agenome-wide genetic screen to identify essential genes required for Cse4 homeostasis toprevent its mislocalization for chromosomal stability. We show that two Skp, Cullin, Fbox(SCF) ubiquitin ligases with the evolutionarily conserved F-box proteins Met30 andCdc4 interact and cooperatively regulate proteolysis of endogenous Cse4 and prevent itsmislocalization for faithful chromosome segregation under physiological conditions. Theinteraction of Met30 with Cdc4 is independent of the D domain, which is essential for theirhomodimerization and ubiquitination of other substrates. The requirement for both Cdc4and Met30 for ubiquitination is specifc for Cse4; and a common substrate for Cdc4 andMet30 has not previously been described. Met30 is necessary for the interaction betweenCdc4 and Cse4, and defects in this interaction lead to stabilization and mislocalization ofCse4, which in turn contributes to CIN. We provide the first direct link between Cse4 mislocalizationto defects in kinetochore structure and show that SCF-mediated proteolysis ofPLOS Genetics Cse4 is a major mechanism that prevents stable maintenance of Cse4 at non-centromericregions, thus ensuring faithful chromosome segregation. In summary, we have identifiedessential pathways that regulate cellular levels of endogenous Cse4 and shown that proteolysisof Cse4 by SCF-Met30/Cdc4 prevents mislocalization and CIN in unperturbed cells.Fil: Au, Wei-Chun. National Institutes of Health; Estados UnidosFil: Zhang, Tianyi. National Institutes of Health; Estados UnidosFil: Mishra, Prashant K.. National Institutes of Health; Estados UnidosFil: Eisenstatt, Jessica R.. National Institutes of Health; Estados UnidosFil: Walker, Robert L.. National Institutes of Health; Estados UnidosFil: Ocampo, Josefina. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Dawson, Anthony. National Institutes of Health; Estados UnidosFil: Warren, Jack. National Institutes of Health; Estados UnidosFil: Costanzo, Michael. University of Toronto; CanadáFil: Baryshnikova, Anastasia. California Life Company; Estados UnidosFil: Flick, Karin. University of California; Estados UnidosFil: Clark, David J.. National Institutes of Health; Estados UnidosFil: Meltzer, Paul S.. National Institutes of Health; Estados UnidosFil: Baker, Richard E.. University of Massachussets; Estados UnidosFil: Myers, Chad. University of Minnesota; Estados UnidosFil: Boone, Charles. University of Toronto; CanadáFil: Kaiser, Peter. University of California; Estados UnidosFil: Basrai, Munira A.. National Institutes of Health; Estados Unido
Is there a special mechanism behind the changes in somatic cell and polymorphonuclear leukocyte counts, and composition of milk after a single prolonged milking interval in cows?
<p>Abstract</p> <p>Background</p> <p>A single prolonged milking interval (PMI) e.g. after a technical stop in an automated milking system is of concern for the producer since it is associated with a short-lasting increase in milk somatic cell count (SCC), which is a major quality criterion used at the dairy plants. The content of polymorphonuclear leukocytes (PMN) and how the milk quality is influenced has not been much investigated. The SCC peak occurs without any obvious antigen challenge, possibly indicating a different leukocyte attraction mechanism after a PMI than we see during mastitis.</p> <p>Methods</p> <p>Composite cow milk samples were taken at the milkings twice daily during 7 days before and 5 days after a PMI of 24 h. Milk was analyzed for SCC, PMN, fat, protein and lactose, and at some occasions also casein and free fatty acids (FFA).</p> <p>Results</p> <p>During the PMI the proportion of milk PMN increased sharply in spite of marginally increased SCC. The peak SCC was not observed until the second milking after the PMI, in the afternoon day 1. However, the peak SCC value in <it>morning </it>milk did not occur until one day later, concomitantly with a <it>decrease </it>in the proportion of PMN. After declining, SCC still remained elevated while PMN proportion was decreased throughout the study as was also the milk yield, after the first accumulation of milk during the PMI. Milk composition was changed the day after the PMI, (increased fat and protein content; decreased lactose, whey protein and FFA content) but the changes in the following days were not consistent except for lactose that remained decreased the rest of the study.</p> <p>Conclusion</p> <p>The PMI resulted in increased SCC and proportion of PMN. Additionally, it gave rise to minor alterations in the milk composition in the following milkings but no adverse effect on milk quality was observed. The recruitment of PMN, which was further enhanced the first day <it>after </it>the PMI, appeared to be independent of milk volume or accumulation of milk per se. Hence, we suggest that there is a special immunophysiological/chemoattractant background to the increased migration of leukocytes into the milk compartment observed during and after the PMI.</p
A Role for the Immediate Early Gene Product c-fos in Imprinting T Cells with Short-Term Memory for Signal Summation
T cells often make sequential contacts with multiple DCs in the lymph nodes and are likely to be equipped with mechanisms that allow them to sum up the successive signals received. We found that a period of stimulation as short as two hours could imprint on a T cell a “biochemical memory” of that activation signal that persisted for several hours. This was evidenced by more rapid induction of activation markers and earlier commitment to proliferation upon subsequent stimulation, even when that secondary stimulation occurred hours later. Upregulation of the immediate early gene product c-fos, a component of the AP-1 transcription factor, was maximal by 1–2 hours of stimulation, and protein levels remained elevated for several hours after stimulus withdrawal. Moreover, phosphorylated forms of c-fos that are stable and transcriptionally active persisted for a least a day. Upon brief antigenic stimulation in vivo, we also observed a rapid upregulation of c-fos that could be boosted by subsequent stimulation. Accumulation of phosphorylated c-fos may therefore serve as a biochemical fingerprint of previous suboptimal stimulation, leaving the T cell poised to rapidly resume its activation program upon its next encounter with an antigen-bearing DC
Application of volumetric modulated arc therapy (VMAT) in a dual-vendor environment
Background and Purpose
The purpose of this study was to assess plan quality and treatment time achievable with the new VMAT optimization tool implemented in the treatment planning system Oncentra MasterPlan® as compared to IMRT for Elekta SynergyS® linear accelerators.
Materials and methods
VMAT was implemented on a SynergyS® linear accelerator (Elekta Ltd., Crawley, UK) with Mosaiq® record and verify system (IMPAC Medical Systems, Sunnyvale, CA) and the treatment planning system Oncentra MasterPlan® (Nucletron BV, Veenendaal, the Netherlands). VMAT planning was conducted for three typical target types of prostate cancer, hypopharynx/larynx cancer and vertebral metastases, and compared to standard IMRT with respect to plan quality, number of monitor units (MU), and treatment time.
Results
For prostate cancer and vertebral metastases single arc VMAT led to similar plan quality as compared to IMRT. For treatment of the hypopharynx/larynx cancer, a second arc was necessary to achieve sufficient plan quality. Treatment time was reduced in all cases to 35% to 43% as compared to IMRT. Times required for optimization and dose calculation, however, increased by a factor of 5.0 to 6.8.
Conclusion
Similar or improved plan quality can be achieved with VMAT as compared to IMRT at reduced treatment times but increased calculation times
The Anticancer Plant Triterpenoid, Avicin D, Regulates Glucocorticoid Receptor Signaling: Implications for Cellular Metabolism
Avicins, a family of apoptotic triterpene electrophiles, are known to regulate cellular metabolism and energy homeostasis, by targeting the mitochondria. Having evolved from “ancient hopanoids,” avicins bear a structural resemblance with glucocorticoids (GCs), which are the endogenous regulators of metabolism and energy balance. These structural and functional similarities prompted us to compare the mode of action of avicin D with dexamethasone (Dex), a prototypical GC. Using cold competition assay, we show that Avicin D competes with Dex for binding to the GC receptor (GR), leading to its nuclear translocation. In contrast to Dex, avicin-induced nuclear translocation of GR does not result in transcriptional activation of GC-dependent genes. Instead we observe a decrease in the expression of GC-dependent metabolic proteins such as PEPCK and FASN. However, like Dex, avicin D treatment does induce a transrepressive effect on the pro-inflammatory transcription factor NF-κB. While avicin's ability to inhibit NF-κB and its downstream targets appear to be GR-dependent, its pro-apoptotic effects were independent of GR expression. Using various deletion mutants of GR, we demonstrate the requirement of both the DNA and ligand binding domains of GR in mediating avicin D's transrepressive effects. Modeling of avicin-GR interaction revealed that avicin molecule binds only to the antagonist confirmation of GR. These findings suggest that avicin D has properties of being a selective GR modulator that separates transactivation from transrepression. Since the gene-activating properties of GR are mainly linked to its metabolic effects, and the negative interference with the activity of transcription factors to its anti-inflammatory and immune suppressive effects, the identification of such a dissociated GR ligand could have great potential for therapeutic use
Blood transcriptomics identifies immune signatures indicative of infectious complications in childhood cancer patients with febrile neutropenia
Objectives: Febrile neutropenia (FN) is a major cause of treatment disruption and unplanned hospitalization in childhood cancer patients. This study investigated the transcriptome of peripheral blood mononuclear cells (PBMCs) in children with cancer and FN to identify potential predictors of serious infection. Methods: Whole-genome transcriptional profiling was conducted on PBMCs collected during episodes of FN in children with cancer at presentation to the hospital (Day 1; n = 73) and within 8-24 h (Day 2; n = 28) after admission. Differentially expressed genes as well as gene pathways that correlated with clinical outcomes were defined for different infectious outcomes. Results: Global differences in gene expression associated with specific immune responses in children with FN and documented infection, compared to episodes without documented infection, were identified at admission. These differences resolved over the subsequent 8-24 h. Distinct gene signatures specific for bacteraemia were identified both at admission and on Day 2. Differences in gene signatures between episodes with bacteraemia and episodes with bacterial infection, viral infection and clinically defined infection were also observed. Only subtle differences in gene expression profiles between non-bloodstream bacterial and viral infections were identified. Conclusion: Blood transcriptome immune profiling analysis during FN episodes may inform monitoring and aid in defining adequate treatment for different infectious aetiologies in children with cancer
A multi-targeted approach to suppress tumor-promoting inflammation
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes
Plasma triglyceride and high density lipoprotein cholesterol are poor surrogate markers of pro-atherogenic chylomicron remnant homeostasis in subjects with the metabolic syndrome
Background: Subjects with metabolic syndrome (MetS) exhibit impaired lipoprotein metabolism and have an increased risk of cardiovascular disease. Although the risk is attributed primarily to the risk associated with individual components, it is also likely affected by other associated metabolic defects. Remnants of postprandial lipoproteins show potent atherogenicity in cell and animal models of insulin resistance and in pre-diabetic subjects with postprandial dyslipidemia. However, few studies have considered regulation of chylomicron remnant homeostasis in MetS per se. This study measured the plasma concentration in Caucasian men and women of small dense chylomicrons following fasting and explored associations with metabolic and anthropometric measures. Methods: A total of 215 Australian Caucasian participants (me dianage62years) were investigated. Of them, 40 participants were classified as having MetS. Apolipoprotein (apo) B-48, an exclusive marker of chylomicrons, metabolic markers and anthropometric measures were determined following an overnight fast.Results: The fasting apo B-48 concentration was 40 % higher in subjects with MetS than those without MetS. In all subjects, triglyceride ( r =0.445, P < 0.0005), non-HDL cholesterol ( r =0.28, P < 0.0005) and HDL cholesterol concentration ( r = − 0.272, P < 0.0005) were weakly associated with apo B-48 concentration. In subjects with MetS, the association of apo B-48 with triglyceride and non-HDL cholesterol was enhanced, but neither were robust markers of elevated apo B-48 in MetS (r = 0.618 and r = 0.595 respectively). There was no association between apo B-48 and HDL cholesterol in subjects with MetS. Conclusion: This study demonstrates a substantial accumulation of pro-atherogenic remnants in subjects with MetS. We have shown that in a Caucasian cohort, the fasting plasma concentration of triglyceride or HDL/non-HDL cholesterol serves as poor surrogate markers of atherogenic chylomicron remnants. These findings suggest that subjects with MetS exhibit a chronic defect in chylomicron metabolism that is likely to contribute to their increased CV risk
- …