31 research outputs found

    Designer DNA Architectures: Applications in Nanomedicine

    Get PDF
    DNA has been used as a material for the construction of nanoscale objects. These nanostructures are programmable and allow the conjugation of biomolecular guests to improve their functionality. DNA nanostructures display a wide variety of characteristics, such as cellular permeability, biocompatibility and stability, and responsiveness to external stimuli, making them excellent candidates for applications in nanomedicine

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    DNA Nanocages

    No full text

    Survey and summary. Triplex-forming oligonucleotides: a third strand for DNA nanotechnology

    No full text
    DNA self-assembly has proved to be a useful bottomup strategy for the construction of user-defined nanoscale objects, lattices and devices. The design of these structures has largely relied on exploiting simple base pairing rules and the formation of double-helical domains as secondary structural elements. However, other helical forms involving specific non-canonical base-base interactions have introduced a novel paradigm into the process of engineering with DNA. The most notable of these is a three-stranded complex generated by the binding of a third strand within the duplex major groove, generating a triple-helical ('triplex') structure. The sequence, structural and assembly requirements that differentiate triplexes from their duplex counterparts has allowed the design of nanostructures for both dynamic and/or structural purposes, as well as a means to target non-nucleic acid components to precise locations within a nanostructure scaffold. Here, we review the properties of triplexes that have proved useful in the engineering of DNA nanostructures, with an emphasis on applications that hitherto have not been possible by duplex formation alone.</p

    DNA-based construction at the nanoscale: emerging trends and applications

    No full text
    The field of structural DNA nanotechnology has evolved remarkably—from the creation of artificial immobile junctions to the recent DNA–protein hybrid nanoscale shapes—in a span of about 35 years. It is now possible to create complex DNA-based nanoscale shapes and large hierarchical assemblies with greater stability and predictability, thanks to the development of computational tools and advances in experimental techniques. Although it started with the original goal of DNA-assisted structure determination of difficult-to-crystallize molecules, DNA nanotechnology has found its applications in a myriad of fields. In this review, we cover some of the basic and emerging assembly principles: hybridization, base stacking/shape complementarity, and protein-mediated formation of nanoscale structures. We also review various applications of DNA nanostructures, with special emphasis on some of the biophysical applications that have been reported in recent years. In the outlook, we discuss further improvements in the assembly of such structures, and explore possible future applications involving super-resolved fluorescence, single-particle cryo-electron (cryo-EM) and x-ray free electron laser (XFEL) nanoscopic imaging techniques, and in creating new synergistic designer materials

    Caffeine-induced release of small molecules from DNA nanostructures

    No full text
    Summary: Several planar aromatic molecules are known to intercalate between base pairs of double-stranded DNA. This mode of interaction has been used to stain DNA as well as to load drug molecules onto DNA-based nanostructures. Some small molecules are also known to induce deintercalation in double-stranded DNA, one such molecule being caffeine. Here, we compared the ability of caffeine to cause deintercalation of ethidium bromide, a representative DNA intercalator, from duplex DNA and three DNA motifs of increasing structural complexity (four-way junction, double crossover motif, and DNA tensegrity triangle). We found that caffeine impedes the binding of ethidium bromide in all these structures to the same extent, with some differences in deintercalation profiles. Our results can be useful in the design of DNA nanocarriers for intercalating drugs, where drug release can be chemically stimulated by other small molecules

    Programmable DNA Nanoswitches for Detection of Nucleic Acid Sequences

    No full text
    Detection of nucleic acid sequences is important for applications such as medicine and forensics, but many detection strategies involve multiple time-consuming steps or require expensive lab equipment. Here we report a programmable DNA nanoswitch that undergoes a predefined conformational change upon binding a target sequence, flipping the switch from a linear “off” state to a looped “on” state. The presence of the target sequence is determined without amplification using standard gel electrophoresis to separate the on and off states. We characterized the nanoswitch on a variety of DNA sequences and fragment lengths, showing detection of fragments as short as 20-nt, and sensitivity into the low picomolar range. Specificity and robustness were demonstrated by detection of a single target sequence from both a randomized pool of high concentration oligonucleotides and from a solution of fetal bovine serum (FBS), with no false positive detection in either case. Furthermore, we optimized the process to take less than 30 minutes from sample mixture to readout. By leveraging the already ubiquitous technique of gel electrophoresis, our low cost approach will be especially accessible to researchers in the biomedical sciences
    corecore