10 research outputs found

    Review of risk from potential emerging contaminants in UK groundwater

    Full text link

    Films piézoélectriques flexibles pour la récupération d’énergie

    No full text
    International audienceDans le cadre des projets N-air-J, MIGAC et Airbivore, financés respectivement par la région Pays de la Loire, le RFI WISE et le CNRS, des films piézoélectriques flexibles de zircono-titanate de plomb (PZT) ont été développés sur substrat flexibles au sein de l’Institut d’Électronique et de Télécommunications de Rennes (IETR). L’objectif principal de ces projets est d’étudier la possibilité de récupérer l’énergie mécanique de courants d’air grâce à l’utilisation de micro-générateurs piézoélectriques flexibles. Les couches minces de PZT, lorsque elles sont électriquement polarisées, possèdent en effet des propriétés piézoélectriques macroscopiques leur permettant de convertir l’énergie mécanique en énergie électrique, et inversement. De par le budget thermique élevé nécessaire à la cristallisation du PZT (autour de 650 °C), ces couches minces sont généralement déposées sur des substrats rigides de silicium, de saphir ou encore de MgO.Dans cette présentation est décrit le procédé de fabrication par Chemical Solution Deposition (CSD) de films de PZT flexibles déposés sur feuille d’aluminium en structure Métal-Isolant-Métal (MIM)1, ainsi que les caractérisations ferroélectriques et piézoélectriques des condensateurs obtenus. De par leur faible épaisseur (20 µm) et la conformabilité de l’aluminium, les films réalisés sont facilement découpables et permettent d’obtenir des géométries originales.Ces films, étant réalisés pour des applications de récupération d’énergie, ont été caractérisés sur un banc mécanique à des fréquences d’excitations forcées très basses (dans la gamme de l’Hertz). Du fait de la forte permittivité du PZT et de sa faible épaisseur, le générateur piézoélectrique présente une forte capacité (autour de 200 nF), ce qui limite la tension de sortie du générateur à quelques centaines de millivolts. Afin d’augmenter cette tension de sortie, et par conséquent la puissance du générateur, le film de PZT est transféré par voie chimique sur un film polymère de polytéréphtalate d’éthylène (PET). La suppression du plan de masse, allié à une structure d’électrodes interdigitées (IDE) permet d’obtenir des tensions de sortie supérieures à 30V

    From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy.

    No full text
    Bottom-up strategies can be effectively implemented for the fabrication of atomically precise graphene nanoribbons. Recently, using 10,10'-dibromo-9,9'-bianthracene (DBBA) as a molecular precursor to grow armchair nanoribbons on Au(111) and Cu(111), we have shown that substrate activity considerably affects the dynamics of ribbon formation, nonetheless without significant modifications in the growth mechanism. In this paper we compare the on-surface reaction pathways for DBBA molecules on Cu(111) and Cu(110). Evolution of both systems has been studied via a combination of core-level X-ray spectroscopies, scanning tunneling microscopy, and theoretical calculations. Experimental and theoretical results reveal a significant increase in reactivity for the open and anisotropic Cu(110) surface in comparison with the close-packed Cu(111). This increased reactivity results in a predominance of the molecular-substrate interaction over the intermolecular one, which has a critical impact on the transformations of DBBA on Cu(110). Unlike DBBA on Cu(111), the Ullmann coupling cannot be realized for DBBA/Cu(110) and the growth of nanoribbons via this mechanism is blocked. Instead, annealing of DBBA on Cu(110) at 250 °C results in the formation of a new structure: quasi-zero-dimensional flat nanographenes. Each nanographene unit has dehydrogenated zigzag edges bonded to the underlying Cu rows and oriented with the hydrogen-terminated armchair edge parallel to the [1-10] direction. Strong bonding of nanographene to the substrate manifests itself in a high adsorption energy of -12.7 eV and significant charge transfer of 3.46e from the copper surface. Nanographene units coordinated with bromine adatoms are able to arrange in highly regular arrays potentially suitable for nanotemplating

    5 Amidines and Guanidines in Medicinal Chemistry

    No full text
    corecore