95 research outputs found

    HYTHIRM Radiance Modeling and Image Analyses in Support of STS-119, STS-125 and STS-128 Space Shuttle Hypersonic Re-entries

    Get PDF
    We provide the first geometrically accurate (i.e., 3-D) temperature maps of the entire windward surface of the Space Shuttle during hypersonic reentry. To accomplish this task we began with estimated surface temperatures derived from CFD models at integral high Mach numbers and used them, the Shuttle's surface properties and reasonable estimates of the sensor-to-target geometry to predict the emitted spectral radiance from the surface (in units of W sr-1 m-2 nm-1). These data were converted to sensor counts using properties of the sensor (e.g. aperture, spectral band, and various efficiencies), the expected background, and the atmosphere transmission to inform the optimal settings for the near-infrared and midwave IR cameras on the Cast Glance aircraft. Once these data were collected, calibrated, edited, registered and co-added we formed both 2-D maps of the scene in the above units and 3-D maps of the bottom surface in temperature that could be compared with not only the initial inputs but also thermocouple data from the Shuttle itself. The 3-D temperature mapping process was based on the initial radiance modeling process. Here temperatures were guessed for each node in a well-resolved 3-D framework, a radiance model was produced and compared to the processed imagery, and corrections to the temperature were estimated until the iterative process converged. This process did very well in characterizing the temperature structure of the large asymmetric boundary layer transition the covered much of the starboard bottom surface of STS-119 Discovery. Both internally estimated accuracies and differences with CFD models and thermocouple measurements are at most a few percent. The technique did less well characterizing the temperature structure of the turbulent wedge behind the trip due to limitations in understanding the true sensor resolution. (Note: Those less inclined to read the entire paper are encouraged to read an Executive Summary provided at the end.

    Application of a Near Infrared Imaging System for Thermographic Imaging of the Space Shuttle during Hypersonic Re-Entry

    Get PDF
    High resolution calibrated near infrared (NIR) imagery was obtained of the Space Shuttle s reentry during STS-119, STS-125, and STS-128 missions. The infrared imagery was collected using a US Navy NP-3D Orion aircraft using a long-range infrared optical package referred to as Cast Glance. The slant ranges between the Space Shuttle and Cast Glance were approximately 26-41 nautical miles at point of closest approach. The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. HYTHIRM required several mission tools to acquire the imagery. These tools include pre-mission acquisition simulations of the Shuttle trajectory in relationship to the Cast Glance aircraft flight path, radiance modeling to predict the infrared response of the Shuttle, and post mission analysis tools to process the infrared imagery to quantitative temperature maps. The spatially resolved global thermal measurements made during the Shuttle s hypersonic reentry provides valuable flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is considered critical for the development of turbulence models supporting NASA s next-generation spacecraft. This paper will provide the motivation and details behind the use of an upgraded NIR imaging system used onboard a Navy Cast Glance aircraft and describe the characterizations and procedures performed to obtain quantitative temperature maps. A brief description and assessment will be provided of the previously used analog NIR camera along with image examples from Shuttle missions STS-121, STS-115, and solar tower test. These thermal observations confirmed the challenge of a long-range acquisition during re-entry. These challenges are due to unknown atmospheric conditions, image saturation, vibration etc. This provides the motivation for the use of a digital NIR sensor. The characterizations performed on the digital NIR sensor included radiometric, spatial, and spectral measurements using blackbody radiation sources and known targets. An assessment of the collected data for three Space Shuttle atmospheric re-entries, STS-119, STS-125, and STS-128, are provided along with a description of various events of interest captured using the digital NIR imaging system such as RCS firings and boundary layer transitions. Lastly the process used to convert the raw image counts to quantitative temperatures is presented along with comparisons to the Space Shuttle's onboard thermocouples

    Thermographic Imaging of the Space Shuttle During Re-Entry Using a Near Infrared Sensor

    Get PDF
    High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter s hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA s next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness. Keywords: HYTHIRM, Space Shuttle thermography, hypersonic imaging, near infrared imaging, histogram analysis, singular value decomposition, eigenvalue image sharpnes

    The Siren Site and the Long Transition from Archaic to Late Prehistoric Lifeways on the Eastern Edwards Plateau of Central Texas

    Get PDF
    On behalf of the Texas Department of Transportation (TxDOT), SWCA Environmental Consultants (SWCA) conducted testing and data recovery investigations at the Siren site (41WM1126), a prehistoric multi-component site in the Interstate Highway 35 right-of-way along the South Fork of the San Gabriel River in Williamson County, Texas. The work was done to fulfill TxDOT’s compliance obligations under the National Historic Preservation Act and the Antiquities Code of Texas. The testing investigations were conducted under Antiquities Permit 3834, and the subsequent data recovery was under Permit 3938. Kevin Miller served as Principal Investigator on both permits. Though the site extends far beyond the area of potential effects both horizontally and vertically, the investigations focused on Late Archaic and Late Prehistoric components within a relatively limited area that would be subject to project impacts. The investigations were conducted in February 2006. The investigations identified five isolable components that were intermittently laid down from approximately 2600 to 900 years ago. A substantial Late Prehistoric Austin phase occupation is represented by Scallorn projectile points, stone tools, burned rock, faunal materials, and radiocarbon dates from cooking features. The component feature assemblage includes a cluster of discrete, well-preserved burned rock features that range from small fire-cracked rock concentrations to a large, slab-lined feature that dominates the cluster. The underlying components include four cultural strata representing a series of phases in the final millennium or so of the long Archaic period. These components span approximately 2600 to 1500 b.p., though earlier, deeply buried components were also noted on the site. These deeper deposits were not the focus of the investigations, however, since they would not be affected by the project. The Archaic components revealed a suite of small side-notched dart points such as Ensor, Fairland, and Frio, as well as many earlier broad-bladed styles such as Castroville, Montell, Marshall, and Pedernales. These robust components contained numerous burned rock features of varying size and function, abundant tools, well-preserved faunal materials, macrobotanical remains including geophytes from several earth ovens, and a large suite of radiocarbon dates. The features include an incipient burned rock midden, burned rock clusters, a debitage reduction area, a biface cache, slab-lined hearths, basin-shaped hearths, and small circular hearths. The distributions of artifacts and features within the Archaic components across the excavation blocks showed significant variations. These differences reflect sequential components that provide a view of diachronic trends in technology, subsistence, economy, and a suite of other behaviors and activities during the long transition from Archaic to Late Prehistoric adaptations. As previously determined by the testing excavations and further substantiated by the data recovery investigations, the Siren site, most notably the Late Archaic and Late Prehistoric components, is eligible for the National Register of Historic Places under Criterion D, 36 CFR 60.4, and eligible for State Archeological Landmark designation under Criteria 1 and 2 of the Rules of Practice and Procedure for the Antiquities Code of Texas, 13 TAC 26.8. The excavations and subsequent analysis have mitigated the adverse effects of the bridge construction by recovering the vast majority of the affected components within the area of potential effect. No further archaeological work is recommended. Portions of the site outside the area of potential effects have not been fully evaluated, and any future impacts beyond the mitigated areas warrant further assessment

    Fifteen years of the Australian imaging, biomarkers and lifestyle (AIBL) study: Progress and observations from 2,359 older adults spanning the spectrum from cognitive normality to Alzheimer\u27s disease

    Get PDF
    Background: The Australian Imaging, Biomarkers and Lifestyle (AIBL) Study commenced in 2006 as a prospective study of 1,112 individuals (768 cognitively normal (CN), 133 with mild cognitive impairment (MCI), and 211 with Alzheimer\u27s disease dementia (AD)) as an \u27Inception cohort\u27 who underwent detailed ssessments every 18 months. Over the past decade, an additional 1247 subjects have been added as an \u27Enrichment cohort\u27 (as of 10 April 2019). Objective: Here we provide an overview of these Inception and Enrichment cohorts of more than 8,500 person-years of investigation. Methods: Participants underwent reassessment every 18 months including comprehensive cognitive testing, neuroimaging (magnetic resonance imaging, MRI; positron emission tomography, PET), biofluid biomarkers and lifestyle evaluations. Results: AIBL has made major contributions to the understanding of the natural history of AD, with cognitive and biological definitions of its three major stages: preclinical, prodromal and clinical. Early deployment of Aβ-amyloid and tau molecular PET imaging and the development of more sensitive and specific blood tests have facilitated the assessment of genetic and environmental factors which affect age at onset and rates of progression. Conclusion: This fifteen-year study provides a large database of highly characterized individuals with longitudinal cognitive, imaging and lifestyle data and biofluid collections, to aid in the development of interventions to delay onset, prevent or treat AD. Harmonization with similar large longitudinal cohort studies is underway to further these aims

    Subsequent Surgery After Revision Anterior Cruciate Ligament Reconstruction: Rates and Risk Factors From a Multicenter Cohort

    Get PDF
    BACKGROUND: While revision anterior cruciate ligament reconstruction (ACLR) can be performed to restore knee stability and improve patient activity levels, outcomes after this surgery are reported to be inferior to those after primary ACLR. Further reoperations after revision ACLR can have an even more profound effect on patient satisfaction and outcomes. However, there is a current lack of information regarding the rate and risk factors for subsequent surgery after revision ACLR. PURPOSE: To report the rate of reoperations, procedures performed, and risk factors for a reoperation 2 years after revision ACLR. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: A total of 1205 patients who underwent revision ACLR were enrolled in the Multicenter ACL Revision Study (MARS) between 2006 and 2011, composing the prospective cohort. Two-year questionnaire follow-up was obtained for 989 patients (82%), while telephone follow-up was obtained for 1112 patients (92%). If a patient reported having undergone subsequent surgery, operative reports detailing the subsequent procedure(s) were obtained and categorized. Multivariate regression analysis was performed to determine independent risk factors for a reoperation. RESULTS: Of the 1112 patients included in the analysis, 122 patients (11%) underwent a total of 172 subsequent procedures on the ipsilateral knee at 2-year follow-up. Of the reoperations, 27% were meniscal procedures (69% meniscectomy, 26% repair), 19% were subsequent revision ACLR, 17% were cartilage procedures (61% chondroplasty, 17% microfracture, 13% mosaicplasty), 11% were hardware removal, and 9% were procedures for arthrofibrosis. Multivariate analysis revealed that patients aged <20 years had twice the odds of patients aged 20 to 29 years to undergo a reoperation. The use of an allograft at the time of revision ACLR (odds ratio [OR], 1.79; P = .007) was a significant predictor for reoperations at 2 years, while staged revision (bone grafting of tunnels before revision ACLR) (OR, 1.93; P = .052) did not reach significance. Patients with grade 4 cartilage damage seen during revision ACLR were 78% less likely to undergo subsequent operations within 2 years. Sex, body mass index, smoking history, Marx activity score, technique for femoral tunnel placement, and meniscal tearing or meniscal treatment at the time of revision ACLR showed no significant effect on the reoperation rate. CONCLUSION: There was a significant reoperation rate after revision ACLR at 2 years (11%), with meniscal procedures most commonly involved. Independent risk factors for subsequent surgery on the ipsilateral knee included age <20 years and the use of allograft tissue at the time of revision ACLR

    Neural Correlates of Visual Motion Prediction

    Get PDF
    Predicting the trajectories of moving objects in our surroundings is important for many life scenarios, such as driving, walking, reaching, hunting and combat. We determined human subjects’ performance and task-related brain activity in a motion trajectory prediction task. The task required spatial and motion working memory as well as the ability to extrapolate motion information in time to predict future object locations. We showed that the neural circuits associated with motion prediction included frontal, parietal and insular cortex, as well as the thalamus and the visual cortex. Interestingly, deactivation of many of these regions seemed to be more closely related to task performance. The differential activity during motion prediction vs. direct observation was also correlated with task performance. The neural networks involved in our visual motion prediction task are significantly different from those that underlie visual motion memory and imagery. Our results set the stage for the examination of the effects of deficiencies in these networks, such as those caused by aging and mental disorders, on visual motion prediction and its consequences on mobility related daily activities

    Anterior Medial Prefrontal Cortex Exhibits Activation during Task Preparation but Deactivation during Task Execution

    Get PDF
    BACKGROUND: The anterior prefrontal cortex (PFC) exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN), which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC) is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. METHODOLOGY/PRINCIPAL FINDINGS: Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition) or to ignore them (No face memory condition), then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. CONCLUSIONS/SIGNIFICANCE: The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore