73 research outputs found
A study of the Z production cross-section in pp collisions at √s = 7 using tau final states
A measurement of the inclusive Z → ττ cross-section in pp collisions at
√s =7 is presented based on a dataset of 1.0 fb[superscript −1] collected by the LHCb detector. Candidates for Z → τ τ decays are identified through reconstructed final states with two muons, a muon and an electron, a muon and a hadron, or an electron and a hadron. The production cross-section for Z bosons, with invariant mass between 60 and 120 GeV/c[superscript 2], which decay to τ leptons with transverse momenta greater than 20 GeV/c and pseudorapidities between 2.0 and 4.5, is measured to be σ[subscript pp]→Z→ττ = 71.4 ± 3.5 ± 2.8 ± 2.5 pb; the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the integrated luminosity. The ratio of the cross-sections for Z → τ τ to Z → μμ is determined to be 0.93 ± 0.09, where the uncertainty is the combination of statistical, systematic, and luminosity uncertainties of the two measurements.National Science Foundation (U.S.
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Precision measurement of the B0s-B¯0s oscillation frequency with the decay B0s → D−sπ+
A key ingredient to searches for physics beyond the Standard Model in B0s mixing phenomena is the measurement of the B0s– oscillation frequency, which is equivalent to the mass difference Δms of the B0s mass eigenstates. Using the world's largest B0s meson sample accumulated in a dataset, corresponding to an integrated luminosity of 1.0 fb−1, collected by the LHCb experiment at the CERN LHC in 2011, a measurement of Δms is presented. A total of about 34 000 B0s → D−sπ+ signal decays are reconstructed, with an average decay time resolution of 44 fs. The oscillation frequency is measured to be Δms = 17.768 ± 0.023 (stat) ± 0.006 (syst) ps−1, which is the most precise measurement to date
Peptidoglycan-Modifying Enzyme Pgp1 Is Required for Helical Cell Shape and Pathogenicity Traits in Campylobacter jejuni
The impact of bacterial morphology on virulence and transmission attributes of pathogens is poorly understood. The prevalent enteric pathogen Campylobacter jejuni displays a helical shape postulated as important for colonization and host interactions. However, this had not previously been demonstrated experimentally. C. jejuni is thus a good organism for exploring the role of factors modulating helical morphology on pathogenesis. We identified an uncharacterized gene, designated pgp1 (peptidoglycan peptidase 1), in a calcofluor white-based screen to explore cell envelope properties important for C. jejuni virulence and stress survival. Bioinformatics showed that Pgp1 is conserved primarily in curved and helical bacteria. Deletion of pgp1 resulted in a striking, rod-shaped morphology, making pgp1 the first C. jejuni gene shown to be involved in maintenance of C. jejuni cell shape. Pgp1 contributes to key pathogenic and cell envelope phenotypes. In comparison to wild type, the rod-shaped pgp1 mutant was deficient in chick colonization by over three orders of magnitude and elicited enhanced secretion of the chemokine IL-8 in epithelial cell infections. Both the pgp1 mutant and a pgp1 overexpressing strain – which similarly produced straight or kinked cells – exhibited biofilm and motility defects. Detailed peptidoglycan analyses via HPLC and mass spectrometry, as well as Pgp1 enzyme assays, confirmed Pgp1 as a novel peptidoglycan DL-carboxypeptidase cleaving monomeric tripeptides to dipeptides. Peptidoglycan from the pgp1 mutant activated the host cell receptor Nod1 to a greater extent than did that of wild type. This work provides the first link between a C. jejuni gene and morphology, peptidoglycan biosynthesis, and key host- and transmission-related characteristics
Differential branching fraction and angular analysis of the decay B s0 → φμ + μ -
The determination of the differential branching fraction and the first angular analysis of the decay Bs0 → φμ + μ - are presented using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment at √s=7 TeV. The differential branching fraction is determined in bins of q 2, the invariant dimuon mass squared. Integration over the full q 2 range yields a total branching fraction of B (Bs0 → φμ + μ -(7.07 -0.59+0.64± 0.71± 0.71) × 10 -7, where the first uncertainty is statistical, the second systematic, and the third originates from the branching fraction of the normalisation channel. An angular analysis is performed to determine the angular observables F L, S 3, A 6, and A 9. The observables are consistent with Standard Model expectations. [Figure not available: see fulltext.] © 2013 CERN for the benefit of the LHCb collaboration
Updated measurements of exclusive J/ψ and ψ(2S) production cross-sections in pp collisions at √s = 7 TeV
The differential cross-section as a function of rapidity has been measured for the exclusive production of J/ψ and ψ(2S) mesons in proton–proton collisions at √s = 7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb−1. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects
First evidence for the two-body charmless baryonic decay B0 → pp̄
The results of a search for the rare two-body charmless baryonic decays B0 → pp̄ and B0s → pp̄ are reported. The analysis uses a data sample, corresponding to an integrated luminosity of 0.9 fb-1, of pp collision data collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. An excess of B0 → pp̄ candidates with respect to background expectations is seen with a statistical significance of 3.3 standard deviations. This is the first evidence for a two-body charmless baryonic B0 decay. No significant B0s → pp̄ signal is observed, leading to an improvement of three orders of magnitude over previous bounds. If the excess events are interpreted as signal, the 68.3% confidence level intervals on the branching fractions are (Equation) where the first uncertainty is statistical and the second is systematic
Observation of B_{c}^{+}→J/ψD_{s}^{+} and B_{c}^{+}→J/ψD_{s}^{*+} decays
The decays B+c→J/ψD+s and B+c→J/ψD*+s are observed for the first time using a dataset, corresponding to an integrated luminosity of 3 fb−1, collected by the LHCb experiment in proton-proton collisions at center-of-mass energies of s√=7 and 8 TeV. The statistical significance for both signals is in excess of 9 standard deviations. The following ratios of branching fractions are measured to be B(B+c→J/ψD+s)B(B+c→J/ψπ+)=2.90±0.57±0.24, B(B+c→J/ψD*+s)B(B+c→J/ψD+s)=2.37±0.56±0.10, where the first uncertainties are statistical and the second systematic. The mass of the B+c meson is measured to be mB+c=6276.28±1.44(stat)±0.36(syst) MeV/c2, using the B+c→J/ψD+s decay mode
Measurement of the cross-section for Z → e+e- production in pp collisions at s√=7 TeV
A measurement of the cross-section for pp → Z → e+e− is presented using data at s√=7 TeV corresponding to an integrated luminosity of 0.94 fb−1. The process is measured within the kinematic acceptance p T > 20 GeV/c and 2 120 GeV/c 2. The cross-section is determined to be where the first uncertainty is statistical, the second is systematic and the third is the uncertainty in the luminosity. The measurement is performed as a function of Z rapidity and as a function of an angular variable which is closely related to the Z transverse momentum. The results are compared with previous LHCb measurements and with theoretical predictions from QCD
Studies of beauty baryon decays to D0ph− and Λ+ch− final states
Decays of beauty baryons to the D0ph− and Λ+ch− final states (where h indicates a pion or a kaon) are studied using a data sample of pp collisions, corresponding to an integrated luminosity of 1.0 fb−1, collected by the LHCb detector. The Cabibbo-suppressed decays Λ0b→D0pK− and Λ0b→Λ+cK− are observed, and their branching fractions are measured with respect to the decays Λ0b→D0pπ− and Λ0b→Λ+cπ−. In addition, the first observation is reported of the decay of the neutral beauty-strange baryon Ξ0b to the D0pK− final state, and a measurement of the Ξ0b mass is performed. Evidence of the Ξ0b→Λ+cK− decay is also reported
- …
