22 research outputs found

    Severe Reactions to a Soy Containing Beverage in Peanut Allergic Individuals Not Avoiding Soy

    Get PDF
    Rationale: Three peanut-allergic individuals experienced severe reactions to a nationally distributed high-protein beverage in the same month. The major protein sources in the beverage were soy-based ingredients and cows’ milk. These individuals did not avoid soy in their diet and previously consumed various soy products without adverse reactions. Peanut contamination of the beverage was not detected by specific ELISA, so attention shifted to the soy ingredients. The research objective was to elucidate differences between the soy milk and soy protein isolate used in the beverage and other forms of soy safely consumed by these individuals. Methods: Specific IgE levels from the three sera were determined by ImmunoCAP® and ImmunoCAP® ISAC. The soy components of the high-protein beverage and 16 forms of soy representing the range of soy ingredients used in foods were screened by SDS-PAGE and immunoblotting. Results: CAP scores ranged from high to very high (peanut: 93.1–441; soy: 10.3–26.1). All sera recognized multiple proteins in many soy products and ingredients. ISAC profiles indicated these individuals were not sensitized to birch pollen or Glym4, which separates them from previously published soy milk reaction profiles. A possible unique protein at 28–30kD in the beverage’s soy milk ingredient was recognized by IgE-binding when compared to other soy products. Conclusions: These individuals were able to consume many soy products even though their sera had high levels of specific soy IgE to multiple soy proteins. Individuals with very high specific IgE scores to peanut may need to avoid certain types of soy milk

    Threshold Dose for Shrimp: A Risk Characterization Based on Objective Reactions in Clinical Studies

    Get PDF
    A DBPCFC [double-blind, placebo-controlled food challenge] of shrimp-allergic adults was conducted to obtain individual threshold doses. Results of this study and published research were combined and a population threshold for shrimp was determined from dose-distribution modeling. The shrimp-allergic population seems to have a higher threshold compared to other populations for other food allergens. Additional shrimp challenges should be done to confirm these initial results

    Neutralizing Antibody-Resistant Hepatitis C Virus Cell-to-Cell Transmission

    Get PDF
    Hepatitis C virus (HCV) can initiate infection by cell-free particle and cell-cell contact-dependent transmission. In this study we use a novel infectious coculture system to examine these alternative modes of infection. Cell-to-cell transmission is relatively resistant to anti-HCV glycoprotein monoclonal anti- bodies and polyclonal immunoglobulin isolated from infected individuals, providing an effective strategy for escaping host humoral immune responses. Chimeric viruses expressing the structural proteins rep- resenting the seven major HCV genotypes demonstrate neutralizing antibody-resistant cell-to-cell trans- mission. HCV entry is a multistep process involving numerous receptors. In this study we demonstrate that, in contrast to earlier reports, CD81 and the tight-junction components claudin-1 and occludin are all essential for both cell-free and cell-to-cell viral transmission. However, scavenger receptor BI (SR-BI) has a more prominent role in cell-to-cell transmission of the virus, with SR-BI-specific antibodies and small-molecule inhibitors showing preferential inhibition of this infection route. These observations highlight the importance of targeting host cell receptors, in particular SR-BI, to control viral infection and spread in the liver

    Comparison of Six Commercial ELISA Kits for Their Specificity and Sensitivity in Detecting Different Major Peanut Allergens

    Get PDF
    Six commercial peanut enzyme-linked immunosorbent assay kits were assessed for their ability to recover peanut from the standard reference material 2387 peanut butter and also for their specificity in detecting four major peanut allergens, Ara h 1, Ara h 2, Ara h 3, and Ara h 6. The percentage recovery of peanut from peanut butter differed across different kits as well as at different sample concentrations. The highest recovery was observed with the Romer and R-Biopharm kits, while four other kits were found to underestimate the protein content of the reference peanut butter samples. Five of the kits were most sensitive in detecting Ara h 3 followed by Ara h 1, while hardly recognizing Ara h 2 and Ara h 6. The other kit showed the highest sensitivity to Ara h 2 and Ara h 6, while Ara h 1 and Ara h 3 were poorly recognized. Although Ara h 2 and Ara h 6 are known to be heat stable and more potent allergens, antisera specific to any of these four peanut proteins/allergens may serve as good markers for the detection of peanut residues

    Purification and Characterization of Naturally Occurring Post-Translationally Cleaved Ara h 6, an Allergen That Contributes Substantially to the Allergenic Potency of Peanut

    Get PDF
    The 2S albumin Ara h 6 is one of the most important peanut allergens. A post-translationally cleaved Ara h 6 (pAra h 6) was purified from Virginia type peanuts, and the cleavage site was mapped using high-resolution mass spectrometry. Compared to intact Ara h 6, pAra h 6 lacks a 5-amino acid stretch, resembling amino acids 43−47 (UniProt accession number Q647G9) in the nonstructured loop. Consequently, pAra h 6 consists of two chains: an N-terminal chain of approximately 5 kDa and a C-terminal chain of approximately 9 kDa, held together by disulfide bonds. Intermediate post-translationally cleaved products, in which this stretch is cleaved yet still attached to one of the subunits, are also present. The secondary structure and immunoglobulin E (IgE) binding of pAra h 6 resembles that of intact Ara h 6, indicating that the loss of the nonstructured loop is not critical for maintaining the protein structure. Commercially available monoclonal and polyclonal immunoglobulin G (IgG) antibodies directed to Ara h 6 react with both intact Ara h 6 and pAra h 6, suggesting that the involved epitopes are not located in the area that is post-translationally cleaved. No differences between intact Ara h 6 and pAra h 6 in terms of IgE binding were found, suggesting that the area that is post-translationally cleaved is not involved in IgE epitopes either. For all main cultivars Runner, Virginia, Valencia, and Spanish, intact Ara h 6 and pAra h 6 occur in peanut at similar levels, indicating that pAra h 6 is a consistent and important contributor to the allergenic potency of peanut

    Peanut Can Be Used as a Reference Allergen for Hazard Characterization in Food Allergen Risk Management: A Rapid Evidence Assessment and Meta-Analysis

    Get PDF
    Regional and national legislation mandates the disclosure of “priority” allergens when present as an ingredient in foods, but this does not extend to the unintended presence of allergens due to shared production facilities. This has resulted in a proliferation of precautionary allergen (“may contain”) labels (PAL) that are frequently ignored by food-allergic consumers. Attempts have been made to improve allergen risk management to better inform the use of PAL, but a lack of consensus has led to variety of regulatory approaches and nonuniformity in the use of PAL by food businesses. One potential solution would be to establish internationally agreed “reference doses,” below which no PAL would be needed. However, if reference doses are to be used to inform the need for PAL, then it is essential to characterize the hazard associated with these low-level exposures. For peanut, there are now published data relating to over 3000 double-blind, placebo-controlled challenges in allergic individuals, but a similar level of evidence is lacking for other priority allergens. We present the results of a rapid evidence assessment and meta-analysis for the risk of anaphylaxis to a low-level allergen exposure for priority allergens. On the basis of this analysis, we propose that peanut can and should be considered an exemplar allergen for the hazard characterization at a low-level allergen exposure. Resumen: La legislación regional y nacional exige la divulgación de alérgenos "prioritarios" cuando están presentes como ingrediente en los alimentos, pero esto no se extiende a la presencia involuntaria de alérgenos debido a instalaciones de producción compartidas. Esto ha dado lugar a una proliferación de etiquetas de precaución para alérgenos ("pueden contener") (PAL) que los consumidores alérgicos a los alimentos suelen ignorar. Se han hecho intentos para mejorar la gestión del riesgo de alérgenos para informar mejor el uso de PAL, pero la falta de consenso ha llevado a una variedad de enfoques regulatorios y a la falta de uniformidad en el uso de PAL por parte de las empresas alimentarias. Una posible solución sería establecer “dosis de referencia” acordadas internacionalmente, por debajo de las cuales no se necesitaría PAL. Sin embargo, si se van a utilizar dosis de referencia para informar la necesidad de PAL, entonces es esencial caracterizar el peligro asociado con estas exposiciones de bajo nivel. Para el maní, ahora hay datos publicados relacionados con más de 3000 desafíos doble ciego controlados por placebo en individuos alérgicos, pero falta un nivel similar de evidencia para otros alérgenos prioritarios. Presentamos los resultados de una evaluación rápida de la evidencia y un metanálisis del riesgo deanafilaxia a una exposición a alérgenos de bajo nivel para alérgenos prioritarios. Sobre la base de este análisis, proponemos que el cacahuete puede y debe considerarse un alérgeno ejemplar para la caracterización del peligro en una exposición a un alérgeno de bajo nivel.Instituto de Investigación de Tecnología de AlimentosFil: Turner, Paul J. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Patel, Nandinee. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Ballmer-Weber, Barbara K. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Ballmer-Weber, Barbara K. Clínica de Dermatología y Alergología. Kantonsspital; Suiza.Fil: Baumert, Joe L. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Blom, W. Marty. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Brooke-Taylor, Simon. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Brough, Helen. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Brough, Helen. King's College London. Departamento de Alergia Pediátrica; Reino Unido.Fil: Campbell, Dianne E. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Campbell, Dianne E. Tecnologías DBV. Montrouge; Francia.Fil: Chen, Hongbing. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Chinthrajah, R. Sharon. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Crevel, René W.R. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Dubois, Anthony E.J. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Ebisawa, Motohiro. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Elizur, Arnon. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Elizur, Arnon. Universidad de Tel Aviv. Facultad de Medicina Sackler. Departamento de Pediatría; Israel.Fil: Gerdts, Jennifer D. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Gowland, M. Hazel. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Houben, Geert F. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Hourihane, Jonathan O.B. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Knulst, André C. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: La Vieille, Sébastien. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: López, María Cristina. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Mills, E.N. Clare. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Polenta, Gustavo Alberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Tecnología de Alimentos; Argentina.Fil: Polenta, Gustavo Alberto. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Purington, Natasha. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Said, María. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Sampson, Hugh A. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Sampson, Hugh A. Escuela de Medicina Icahn. División de Alergia e Inmunología Pediátricasen. Nueva York. Estados Unidos de América.Fil: Schnadt, Sabine. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Södergren, Eva. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Södergren, Eva. ThermoFisher Scientific; Suecia.Fil: Taylor, Stephen L. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Remington, Benjamin C. Imperial College London. Instituto Nacional del Corazón y los Pulmones; Reino Unido.Fil: Remington, Benjamin C. Grupo BV. Consultoría Remington; Holanda

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    The Effects of Phosphate Type and Potassium Lactate Level on Quality Characteristics of Enhanced Beef Steaks

    Get PDF
    Beef semitendinosus steaks were used to evaluate the effects of sodium phosphate and potassium lactate on quality characteristics of enhanced beef steaks. Sodium phosphate decreased the amount of package purge and cook loss and gave the beef product a darker, redder appearance. Potassium lactate gave the product a darker, redder appearance, while increasing levels of lactate decreased total psychrotrophic (bacterial) plate counts, and decreased package purge and cook loss. Sodium phosphate and potassium lactate aid in extending shelf-life and improving quality attributes of enhanced beef steaks
    corecore