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Abstract 
The 2S albumin Ara h 6 is one of the most important peanut allergens. A post-translationally cleaved 
Ara h 6 (pAra h 6) was purified from Virginia type peanuts, and the cleavage site was mapped using 
high-resolution mass spectrometry. Compared to intact Ara h 6, pAra h 6 lacks a 5-amino acid 
stretch, resembling amino acids 43−47 (UniProt accession number Q647G9) in the nonstructured 
loop. Consequently, pAra h 6 consists of two chains: an N-terminal chain of approximately 5 kDa 
and a C-terminal chain of approximately 9 kDa, held together by disulfide bonds. Intermediate post-
translationally cleaved products, in which this stretch is cleaved yet still attached to one of the sub-
units, are also present. The secondary structure and immunoglobulin E (IgE) binding of pAra h 6 
resembles that of intact Ara h 6, indicating that the loss of the nonstructured loop is not critical for 
maintaining the protein structure. Commercially available monoclonal and polyclonal immuno-
globulin G (IgG) antibodies directed to Ara h 6 react with both intact Ara h 6 and pAra h 6, suggesting 
that the involved epitopes are not located in the area that is post-translationally cleaved. No differ-
ences between intact Ara h 6 and pAra h 6 in terms of IgE binding were found, suggesting that the 
area that is post-translationally cleaved is not involved in IgE epitopes either. For all main cultivars 
Runner, Virginia, Valencia, and Spanish, intact Ara h 6 and pAra h 6 occur in peanut at similar levels, 
indicating that pAra h 6 is a consistent and important contributor to the allergenic potency of peanut. 
 
Keywords: peanut, Arachis hypogaea, allergen, mass spectrometry, IgE 
 
Introduction 
 
In peanut allergies, a food allergy that affects approximately 0.6% of adults and 1−2% of 
children/infants in the United States,1,2 Ara h 2 and Ara h 6 are the dominant allergens.3 In 
vitro studies have shown that Ara h 2 and Ara h 6 are the most potent allergens in peanut,4,5 
and this potency has been confirmed in humans in vivo by skin prick tests.6 Animal models 
indicate an important role for Ara h 2 and Ara h 6, both in elicitation of reactions in sensi-
tized animals and in therapeutic efficacy of sensitized animals treated with peanut immu-
notherapy.7 For humans, immunoglobulin E (IgE) to Ara h 2 and 6 is the best predictor for 
clinically relevant peanut allergy.8,9 

Ara h 2 appears on electrophoresis as a doublet at approximately 17 kDa, and Ara h 6 
appears as a single band of approximately 15 kDa;10 but, several isoforms of each allergen 
have been identified by mass spectrometry.11,12 Ara h 2 and Ara h 6 belong to the 2S albu-
min protein family, commonly occurring in plant seeds and nuts, where they serve as stor-
age proteins. 2S albumins are characterized by a high content of disulfide bonds and a 
highly stable protein core, which is resistant to heat-treatment and digestion.13 Perhaps due 
to this stability, many plant 2S albumins are known food allergens, for example those from 
Brazil nut, walnut, sesame seed, and cashew.13 

2S albumins are members of the prolamin super family that adopt a common fold; bun-
dles of alpha-helices held together by four or five conserved disulfide bonds.14 They typi-
cally appear in plants as heterodimers consisting of two polypeptide chains derived from 
a single precursor protein by posttranslational processing.15 This cleavage occurs in a non-
structured loop which connects alpha-helices.14 However, in peanut, the 2S albumins are 
essentially monomeric proteins.10,16 Apparently, post-translational processing of 2S albu-
mins in peanut is different from that in other plants. Post-translation cleavage has been 
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observed in other peanut storage proteins, such as Ara h 3,17 indicating that the peanut 
plant has the capability for post-translational cleaving of peanut seed storage proteins. 

Few reports have described smaller forms of Ara h 2 and Ara h 618,11 and revealed some 
biochemical characteristics as well as evidence of IgE binding. However, the occurrence of 
smaller forms of Ara h 6 in various peanut types was not investigated. Additionally, it was 
unclear from these studies whether the presence of such smaller forms of Ara h 6 was a 
naturally occurring phenomenon or an artifact of purification. In this study we have puri-
fied naturally occurring, post-translationally cleaved Ara h 6 (referred to as pAra h 6) and 
biochemically characterized forms of this protein. The cleavage sites were mapped using 
mass spectrometry, and the IgE binding properties were assessed using sera from peanut 
allergic and peanut sensitized patients from USA and Sweden studies. Furthermore, the 
presence of this cleaved form of Ara h 6 in various peanut market types was investigated. 
 
Materials and Methods 
 
Use of Allergen Names and Allergen Concentration Determination 
Peanut (Arachis hypogaea) allergen Ara h 6 is listed in the WHO-IUIS Allergen Nomencla-
ture database (www.allergen.org) as conglutin and 2S albumin. The naturally occurring 
posttranslationally cleaved form of Ara h 6 is here referred to as pAra h 6. Protein concen-
trations were determined by absorbance spectroscopy at 280 nm, using A280(1mg/mL) of 0.243 
for intact Ara h 6, and 0.149 for pAra based on the amino acid composition of the proteins 
(UniProt accession number Q647G9; signal peptide of first 21 amino acids not included) 
taking into account that intact Ara h 6 contains amino acids 1−124 and pAra h 6 contains 
amino acids 1−42 plus 48−124. An intermediate form of pAra h 6 was identified as well and 
appeared to have heterogeneity at the cleavage site. Due to this heterogeneity the amino 
acid composition is not known, and therefore, the true protein concentration cannot be 
determined accurately by measuring A280. As a proxy, the A280(1mg/mL) of pAra h 6 was 
used, presumably leading to an overestimation of the concentration, because the interme-
diate form of pAra h 6 may contain a tyrosine residue at position 44. 
 
Peanut Raw Materials and Purification of Intact Ara h 6 and pAra h 6 
Raw peanuts (market types Runner, Virginia, Spanish, and Valencia) were from Jimbo’s 
Jumbos, Inc. (Edenton, North Carolina, USA). Peanut butter, the standard reference mate-
rial (SRM) 2387 was purchased from the National Institute of Standards and Technology 
(Gaithersburg, Maryland, USA). 

For testing by reverse-phase HPLC (rp-HPLC), extracts were made by grinding peanuts 
and extracting the ground material with 50 mM Tris-HCl buffer (pH 8.2), in 1 to 10 ratio, 
for 16 h at 4°C. The aqueous layer was collected by centrifugation, diluted in 50 mM Tris-
HCl buffer (pH 8.2) filtered (0.22 μm) before injection. 

For purification of intact Ara h 6 and pAra h 6, Virginia-type raw peanuts were milled 
and defatted and subsequently extracted as described earlier.4 Intact Ara h 6 was purified 
essentially as described earlier,4 except that an extra purification step after the anion ex-
change column was applied by hydrophobic interaction chromatography using a Source 
Phenyl column (Thermo Fisher Scientific, Uppsala, Sweden). An ammonium sulfate gradient 
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(from 2.15−0 M in water) was used to fractionate. Peaks containing intact Ara h 6 (identified 
as a 15 kDa band on reducing SDS-PAGE) were pooled, dialyzed against water, and sub-
sequently lyophilized. Anion exchange fractions identified as containing pAra h 6 (15 kDa 
band under nonreducing conditions, multiple bands of 5−10 kDa under reducing condi-
tions) were further purified using hydrophobic interaction chromatography, using the 
same conditions as for intact Ara h 6. Two peaks of approximately equal area were ob-
served. The first peak contained pAra h 6 (identified as a 15 kDa band on nonreducing 
SDS-PAGE and as a doublet of 5 and 10 kDa on reducing SDS-PAGE), and the second peak 
contained a protein with similar band pattern plus one extra band. This protein was iden-
tified as the intermediate form of pAra h 6 (see Results and Discussion). Peaks were pooled 
and dialyzed against water and subsequently lyophilized. Lyophilized powders were stored 
refrigerated in airtight containers. Pure fractions were about 100 mg each. 
 
SDS-PAGE Analysis and Immunoblotting 
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis was per-
formed on Mini-PROTEAN-Tris Tricine gels (Bio-Rad, Hercules, California, USA) oper-
ated in the Mini-PROTEAN system according to the instructions of the manufacturer. 
Protein samples were mixed 1:1 (v/v) with Tris Tricine sample buffer either in the presence 
of a reducing agent (350 mM dithiothreitol (DTT)) or in absence of a reducing agent and 
boiled for 10 min. Samples aliquots normalized to a constant protein amount were loaded 
onto the gels and run at a constant current of 100 V for ∼2 h. Following electrophoresis, 
gels were either fixed in 40% methanol and 10% acetic acid for 30 min and stained for 1 h 
with Coomassie Brilliant Blue G-250 (Bio-Rad, Hercules, California, USA) or used for im-
munoblotting. 

For immunoblotting, proteins were transferred from gels onto 0.2 μm polyvinylidene 
difluoride (PVDF) membranes at a constant current of 100 V for 1 h. The unbound sites on 
the membranes were blocked by incubating for 2 h at RT in blocking buffer (0.01 M phos-
phate buffer containing 0.85% NaCl, 0.2% BSA, and 0.05% Tween 20, pH 7.4) followed by 
washing the membranes twice (5 min each) with wash buffer (0.01 M phosphate buffer 
containing 0.85% NaCl and 0.05% Tween 20). Membranes were incubated for 1 h at RT 
with either the monoclonal antibodies (3B8 and 3E12) from the Indoor Ara h 6 ELISA kit 
(Indoor Biotechnologies Inc., Manchester, UK) or polyclonal antibodies from the Morinaga 
peanut protein ELISA kit (Morinaga Institute of Biological Science, Inc. Yokohama-Shi, Ja-
pan) at an appropriate dilution. The monoclonal antibodies supplied with the Indoor kit 
are used at a 1000-fold dilution for ELISA but were used diluted 1:200 (v/v) (in blocking 
buffer) because more dilution than 1:200 resulted in too faint bands. The polyclonal anti-
bodies supplied with the Morinaga ELISA were diluted 1:10 in blocking buffer (v/v) and 
used for immunoblotting. Following the 1 h incubation, membranes were washed four 
times (5 min each) with wash buffer. The membranes incubated with the monoclonal anti-
bodies were incubated with horseradish peroxidase (HRP) labeled goat antimouse immu-
noglobulin G (IgG; Thermo Scientific, Waltham, Massachusetts, USA) diluted 1:10 000 
(v/v) in blocking buffer for 1 h at RT and washed four times (5 min each) with wash buffer. 
A secondary detector antibody was not used for the membranes that were incubated with 
the polyclonal antibodies from the Morinaga ELISA as these antibodies are supplied as 
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HRP conjugated antibodies for the ELISA format. The reactive bands were developed by 
applying the SuperSignal West Dura Extended Duration substrate (Thermo Scientific, Wal-
tham, Massachusetts, USA) and visualizing the signal using a BioSpectrum 815 imaging 
system (UVP, Upland, California). 
 
Mass Spectrometry 
Purified Ara h 6 samples were diluted to 0.05 mg/mL in 30% (v/v) acetonitrile/0.1% (v/v) 
formic acid. tris(2-Carboxyethyl)phosphine (TCEP) was added to a final concentration of 
50 mM where noted for reducing conditions. The intact mass of proteins was investigated 
by direct infusion of samples at a flow rate of 10 μL/min into a Thermo Q Exactive Plus 
Hybrid Quadrupole MS (Thermo Scientific, Waltham, MA, USA) fitted with a Nanospray 
Flex ion source with capillary temperature set at 320°C, spray voltage at 4.0 kV, and sweep 
gas of 12. Additional settings used were resolution 240 000, m/z range of 800−3000, auto-
matic gain control (AGC) target of 1 × 106, and 100 ms maximum injection time. Positive 
ion mode was used for all data acquisition. 

Intact protein data was deconvoluted using Xtract software (Thermo Scientific, Califor-
nia, USA) with settings for monoisotopic data. Deconvoluted masses were analyzed using 
mMass ver 5.519 using Ara h 6 isoform sequence data identified from the NCBI Genbank 
database. Cleavage sites were identified by searching experimental masses against in silico 
digests of each sequence isoform with no assumed cleavage rules and an infinite number 
of allowed cleavages. 
 
IgE Binding by ELISA 
Sera from 16 Swedish peanut-sensitized patients with IgE to Ara h 6 and/or Ara h 2 (Im-
munoCAP ISAC, Thermo Fisher Scientific, Uppsala, Sweden) were selected at the Depart-
ment of Clinical Immunology, Karolinska University Hospital, Stockholm (Table 1; Swedish 
study group). The study was approved by the local ethics committee of Karolinska Insti-
tutet (ethical approval certificate numbers 2011/2085031/4 and 2012/4:1, Stockholm, Swe-
den). Sera of seven patients from a US-sponsored study were also used (Table 1; US study 
group). The patients were from the EU and US (ethical approval certificate number IRB 
Project ID 6029, Lincoln, Nebraska, USA). To qualify for this study, subjects required a 
convincing history of a type I allergic reaction when peanuts were consumed as well as a 
positive skin prick test within the past 6 months or a ImmunoCAP greater than 15 kUA/L 
performed within the last 6 months before study participation. The US study was ap-
proved by the University of Nebraska−Lincoln Institutional Review Board and by the eth-
ics committee of each of the participating clinical collaborators. When serum pools were 
used, sera from the US study were pooled (same volume for all sera) and sera from the 
Swedish patients were pooled (same volume for all sera). Sera from nonpeanut allergic 
donors served as negative controls. 
  



D E  J O N G  E T  A L . ,  J O U R N A L  O F  A G R I C U L T U R A L  A N D  F O O D  C H E M I S T R Y  6 6  (2 0 1 8 )  

6 

Table 1. Patient Description 

ID Study country 

Total peanut 
ImmunoCAP 

(kU/L) 

Ara h 2 
ImmunoCAP 

(kU/L) 

Ara h 2 
ISAC 
(ISU) 

Ara h 6 
ISAC 
(ISU) 

S-1 Sweden 5.7 ND 3.9 3.5 
S-2 Sweden 2.1 ND 1 0.3 
S-3 Sweden 3.5 ND 2.3 2.8 
S-4 Sweden 3 ND 1.7 1.8 
S-5 Sweden > 100 ND 90 55 
S-6 Sweden > 100 > 100 ND ND 
S-7 Sweden > 60 58 ND ND 
S-8 Sweden > 100 > 100 ND ND 
S-9 Sweden > 100 > 100 ND ND 
S-10 Sweden > 100 > 100 ND ND 
S-11 Sweden > 100 83 ND ND 
S-12 Sweden 75 58 ND ND 
S-13 Sweden > 100 > 100 ND ND 
S-14 Sweden 75 56 ND ND 
S-15 Sweden > 100 83 ND ND 
S-16 Sweden > 100 66 ND ND 
US-1 US 77.3 76.3 51.3 45.8 
US-2 US 71.1 40.8 32.5 34.9 
US-3 US 53 39.6 64.5 76 
US-4 US 139 56.7 6.7 3.45 
US-5 US 575 317 31.3 64.2 
US-6 US 72.5 27.4 24 50.2 
US-7 US 787 259 98.5 124.3 

 
Direct ELISA was done as follows. Half-area microtiter plates (96 wells, Greiner bio-

one, Frickenhausen, Germany) were coated with 0.1 μg of corresponding antigen over-
night at 4°C. After blocking with 1% BSA in 0.01 M phosphate buffer containing 0.85% 
NaCl and 0.05% Tween 20, plates were incubated with sera from peanut-sensitized patients 
and two healthy controls (dilution 1:50) for 2 h at RT. Bound IgE was detected by using 
mouse antihuman IgE conjugated to horseradish peroxidase (Abcam, UK) for 1 h at RT 
and 3,3′,5,5′-tetramethylbenzidine (TMB) was added as substrate. The absorbance was 
measured at 450 nm. Assays were performed in triplicate. 

Inhibition ELISA was done with a coating of 0.1 μg of intact Ara h 6, blocking, washing, 
and IgE-detection steps as were used for the direct ELISA. The sera pools (for the Swedish 
and US study groups separate) were diluted 1:25 and mixed 1 to 1 with various concentra-
tions of intact Ara h 6 and pAra h 6, resulting in a final serum pool dilution of 1:50, and 
allergen concentrations ranging from 10 to 0.01 μg/mL. These mixes were incubated on the 
coated and blocked ELISA plates and incubated for 2 h at RT. After washing plates were 
stained for IgE as described for the direct ELISA. Concentrations of peanut protein re-
quired for 50% inhibition (IC50) of IgE binding were calculated as described previously.20 
  



D E  J O N G  E T  A L . ,  J O U R N A L  O F  A G R I C U L T U R A L  A N D  F O O D  C H E M I S T R Y  6 6  (2 0 1 8 )  

7 

Reversed-Phase HPLC 
Reversed-phase HPLC (rpHPLC) was performed based on chromatographic method de-
scribed earlier,21 with some modification as follows. Analyses were performed on a Waters 
UPLC system operated by Empower 3.0 software. Aqueous peanut extracts were analyzed 
on a BEH C4 column (Waters, 150 × 2.1 mm, 1.7 μm; 300 Å) with a 215 nm UV detection 
and a gradient elution from 95% phase A/5% phase B to 10% phase A/90% phase B, (mobile 
phase A H2O/0.2% TFA; mobile phase B ACN/0.17% TFA). 
 
Results and Discussion 
 
Purification and Structural Analysis of Post-Translationally Cleaved Forms of Ara h 6 
From side fractions obtained during a purification of Ara h 6 as described earlier,4 two 
previously unidentified proteins were purified. For both proteins, > 96% of the parent ion 
mass spectrum could be assigned to masses derived from Q647G9 at ± 5 ppm mass accu-
racy, demonstrating Ara h 6 identity. Given the protein identity and the protein profile 
(Fig. 1), the two proteins are likely post-translationally cleaved forms of Ara h 6. One 
adopted the classical model of 2S albumins,15 i.e., a 15 kDa protein band under nonreduc-
ing conditions that dissociates into ∼9 and 5 kDa bands upon reduction (Fig. 1, lanes 
marked “ph6”) and is hereafter referred to as post-translationally cleaved Ara h 6, or pAra 
h 6. The other protein fraction exhibited the same bands on SDS-PAGE, plus one additional 
band under both nonreducing and reducing conditions (Fig. 1, lanes marked “ph6-int”) 
and is referred to as intermediately processed Ara h 6, or intermediately pAra h 6. The 
purity of both proteins is estimated to be > 95%, based on SDS-PAGE and the observation 
that 96% of the parent ion mass spectrum could be assigned to masses derived from 
Q647G9 (± 5 ppm mass accuracy). 
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Figure 1. SDS-PAGE of intact and post-translationally cleaved Ara h 6. (A) Reducing con-
ditions. (B) Nonreducing conditions. M marker proteins (indicated in left margin in kilo-
dalton); M’ marker proteins (indicated in right margin in kilodalton); ih6 intact Ara h 6; 
ph6 post-translationally cleaved Ara h 6; ph6-int intermediate form of post-translationally 
cleaved Ara h 6; h2 Ara h 2. 

 
The peptides present were mapped by intact mass analysis of pAra h 6 fractions under 

reducing and nonreducing conditions using a peptide mass fingerprinting approach, with 
assignment of individual peptides using the Q647G9 sequence. This revealed that part of 
the pAra h 6 forms results from two cleavage events resulting in the removal of part the 
nonstructured loop (residues 43−47). This is considered completely post-translationally 
cleaved Ara h 6 because no species with more extensive cleaving in this area were found. 
Another form of pAra h 6 appears to result from a single cleavage within the flexible loop, 
resulting in distinct N- and C-terminal peptides under reducing conditions, and the mass 
of the intact Ara h 6 protein +18 Da (corresponding to one hydrolysis) when unreduced 
(Fig. 2). This is considered intermediately post-translationally cleaved Ara h 6, because 
further cleaving in this area is still possible. Both of these processed forms of pAra h 6 have 
N- and C-terminal peptides originating from intact Ara h 6, held together by disulfide 
bridging when unreduced. 
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Figure 2. Identification of cleavage sites in post-translationally cleaved Ara h 6. (A) Model 
of Ara h 6 with the nonstructured loop boxed. (B) Zoom-in on nonstructured loop with 
cleavage sites indicated in red. (C) Observed cleavage sites in the intermediate form of 
post-translationally cleaved Ara h 6. (D) Sequence of Ara h 6. The N- and C-terminal pep-
tide of post-translationally cleaved Ara h 6 is underlined in black; the ragged end of the 
N-terminus observed for both intact and post-translationally cleaved Ara h 6 is under-
lined by a single gray line; and the amino acids that can either be with the N-terminal 
peptide or C-terminal peptide in the intermediate form of post-translationally cleaved Ara 
h 6 are underlined by a double gray line. 

 
The nonstructured loop where cleavage occurs is also the domain where Ara h 6 is sus-

ceptible to hydrolysis when exposed to digestion with pepsin or trypsin.22 This confirms 
that this nonstructured loop, which is post-translationally cleaved completely for 2S albu-
mins from other sources than peanut, is indeed susceptible for proteolysis. Yet, in peanut 
an intact form of Ara h 6 and a post-translationally cleaved form apparently coexist. Based 
on homology with other plant seed storage proteins, the presence of post-translationally 
cleaved forms of Ara h 6 is expected; however, only the intact form received extensive 
attention in peanut allergen research. One report described some characteristics of a post-
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translationally cleaved form,18 but this protein was not characterized in detail due to lim-
ited amounts obtained by HPLC-based purification. The material we purified allows for a 
more extensive characterization and furthermore allows to investigate if multiple forms of 
post-translationally cleaved Ara h 6 exist in the peanut seed. 

One form of pAra h 6 adopts the classical band pattern in SDS-PAGE (Fig. 1, lanes 
marked “ph6”), i.e., Fifteen kDa at nonreducing conditions and 5 and 9 kDa at reducing 
conditions.15 The other form shows at reducing conditions an extra band between the 5 and 
9 kDa bands (Fig. 1A, lane marked “ph6-int”), which may indeed be an intermediately 
cleaved form based on molecular weight. Under nonreducing conditions, there is an extra 
band slightly above the 15 kDa band (Fig. 1B, lane marked “ph6-int”). Given the identifi-
cation by mass spectrometry (see above), this ought to be Ara h 6, but a higher molecular 
weight than the intact form is counterintuitive for a cleaved form. One explanation for the 
higher molecular weight may be a larger hydrodynamic radius due to the cleavage: in the 
intermediately cleaved form, part of the nonstructured loop is still present and located at 
the termini of the subunits. These subunits are held together by disulfide bonds, but the 
detergent SDS has disrupted the protein folding, and an extra amino acid stretch at the 
termini may increase the radius. This is not the case for pAra h 6 that is completely cleaved. 
An increase in apparent molecular weight has earlier been shown for a denatured Ara h 6,20 
supporting our hypothesis that cleaved forms of Ara h 6 may have a higher apparent MW 
than intact Ara h 6. We have not further investigated what determined the higher apparent 
MW of intermediate form of pAra h 6. 

2S albumins have conserved disulfide bonds that support a protein structure that is 
dominated by α-helices.14 Lehmann confirmed by far UV-CD spectroscopy that α-helices 
indeed dominate the protein structure.23 Figure 3 shows the far UV CD spectra of intact 
Ara h 6 and the two forms of pAra h 6. Intact Ara h 6 indeed shows the typical spectrum 
of an α-helical protein with spectral minima at 210 and 222 nm and a steep increase in 
ellipticity at a lower wavelength from 200 to 190 nm.23 Both forms of pAra h 6 show the 
same spectral characteristics (differences in protein concentration explain that the spectra 
are not overlapping, which was done to improve readability of the figure). Thus, cleaving 
of Ara h 6 in its nonstructured loop does not affect the secondary protein structure and the 
disulfide bonds are apparently capable of maintaining this structure when the loop is 
cleaved. 
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Figure 3. Far UV CD spectrum of intact and post-translationally cleaved Ara h 6. Black 
line: Post-translationally cleaved Ara h 6. Dotted line: Intact Ara h 6. Gray line: Interme-
diate form of post-translationally cleaved Ara h 6. 

 
Intermediate forms of pAra h 6 may exist in peanut; however, we used the completely 

cleaved form for further comparing with intact Ara h 6 because this completely cleaved 
form will have greater differences with intact Ara h 6 than the intermediately cleaved 
forms. 
 
Reactivity of Ara h 6 Forms with Monoclonal and Polyclonal Antibodies 
Several antibodies against Ara h 6 are commercially available. Figure 4 shows the reactivity 
of several of these with intact Ara h 6 and pAra h 6. Panel A shows polyclonal antibodies 
that were developed for use in ELISA. These antibodies appear reactive to both forms of 
Ara h 6 under reducing conditions; however, when nonreducing conditions are used, only 
intact Ara h 6 shows reactivity, and this reactivity is lower than for intact Ara h 6 at reduc-
ing conditions. No reactivity is observed for the 5 kDa subunit of pAra h 6, indicating that 
the epitopes are located on the 9 kDa, C-terminal part of the protein. The prerequisite of 
reducing disulfide bonds for reactivity with this polyclonal antibody is in line with the 
ELISA protocol for which the polyclonal has been developed; reduction is a sample prep-
aration step for this ELISA (Moringa ELISA peanut product insert, see Materials and Meth-
ods). Panels B and C show the reactivity of two monoclonal antibodies directed against 
Ara h 6, commonly used for ELISA. Both of these monoclonal antibodies show reactivity 
to intact Ara h 6, at reducing and nonreducing conditions, and reactivity with pAra h 6 at 
nonreducing conditions (Fig. 4B−C). This is in line with an earlier observation that pAra h 6 
is equally reactive to intact Ara h 6 in the ELISA that utilizes these two monoclonal anti-
bodies (sandwich ELISA; nonreducing condition).24 
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Figure 4. Reactivity of Ara h 6 forms with monoclonal and polyclonal IgG antibodies. (A) 
Polyclonal antibody (Morinaga). (B) Monoclonal antibody (Indoor 3B8). (C) Monoclonal 
antibody (Indoor 3E12). (D) Corresponding SDS-PAGE with protein stain. Non-Red.: non-
reducing SDS-PAGE conditions. Red.: reducing SDS-PAGE conditions. ih6: intact Ara h 
6. ph6: post-translationally cleaved Ara h 6. M: marker proteins (indicated next to marker 
lane in kilodalton). 

 
Under reducing conditions, only intact Ara h 6 shows reactivity for the monoclonal 

antibodes, while under nonreducing conditions, both forms of Ara h 6 are being recognized. 
The monoclonal antibodies were developed for use in ELISA under native, nondenaturing 
conditions. The reactivity of both monoclonal antibodies for only the intact Ara h 6 under 
reducing conditions suggests that the epitopes recognized by both monoclonal antibodies 
on the pAra h 6 form are sensitive to denaturation. While the exact epitopes of these mono-
clonal antibodies have not been described, the current results allow speculation on the na-
ture of the epitopes. First, the observation that under nonreducing conditions both intact 
Ara h 6 and pAra h 6 react on Westernblot indicates that the epitopes of both monoclonal 
antibodies are not located on the nonstructured loop where the cleave occurs (amino acids 
43−48, or directedly adjacent). Second, the absence or reactivity of both monoclonal anti-
bodies with pAra h 6 under reducing conditions suggest that the 5 and 9 kDa subunits 
should be associated for reactivity with the monoclonal antibodies. In the case of pAra h 6 
where the peptide bond between the 5 and 9 kDa chains is cleaved, this association de-
pends on disulfide bonds, and reduction of disulfide bonds separates the two chains. For 
intact Ara h 6 the two domains are associated by the peptide bond, regardless of the presence 
of disulfide bands, keeping the two domains together at both nonreducing or reducing 
conditions. Together this suggests that for both monoclonal antibodies a certain structural 
organization in Ara h 6 is necessary at positions other than the loop at amino acid positions 
43−48 that is cleaved in pAra h 6. 
 
IgE Reactivity of Ara h 6 Forms 
Binding of allergens to IgE in sensitized patients is a prerequisite of an allergic reaction 
and is therefore investigated to compare intact and pAra h 6. Several papers have shown 
that the IgE binding to Ara h 6 is dependent on conformational epitopes,20,25 and therefore 
native conditions should be used to compare IgE binding of intact Ara h 6 and pAra h 6. 
For this reason, an ELISA format is preferred over immunoblotting following SDS-PAGE. 
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Figure 5 shows binding of IgE from patients from a Swedish and US study group to intact 
Ara h 6 and pAra h 6 in a direct ELISA. While there is diversity in IgE binding between 
patients, the IgE binding to the two different forms of Ara h 6 is comparable on a per pa-
tient level. This is further illustrated by a correlation plot (Fig. 5B). 
 

 
 

Figure 5. IgE binding to intact and post-translationally cleaved Ara h 6. (A) Numbers on 
the X-axis refer to patient codes in Table 1. Bars with fine dots: Intact Ara h 6. Bars with 
large dots: Post-translationally cleaved Ara h 6. OD450nm: optical density at 450 nm. (B) 
Correlation of IgE binding between intact Ara h 6 and post-translationally cleaved Ara h 6 
for sera from the US study (open squares) and Swedish study (filled circles) patients. 
OD450nm: optical density at 450 nm. 

 
Inhibition ELISA was used to quantify the IgE binding, using pools of patient serum. 

Figure 6 shows the inhibition lines, which are virtually overlapping for intact and pAra h 6. 
The concentration required for inhibiting the signal for 50% (IC50) was calculated based on 
triplicate experiments and was 0.41 μg/mL (± 0.28 μg/mL) for intact Ara h 6 and 0.56 μg/mL 
(± 0.27 μg/mL) for pAra h 6 for the Swedish study group and 0.26 μg/mL (± 0.13 μg/mL) 
for intact Ara h 6 and 0.26 μg/mL (± 0.16 μg/mL) for pAra h 6 for the US study group. 
Relevant differences in IgE binding potency, for example for chemically modified hypo-
allergic extracts used for immunotherapy, are typically 10−100-fold and preferably 
more.20,26−28 Thus, the values we report here indicate that intact and pAra h 6 have highly 
comparable IgE binding. 
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Figure 6. Potency of intact and post-translationally cleaved Ara h 6 to inhibit IgE binding. 
(A) Sera from Swedish study; (B) Sera from US study. Filled circles: Inhibition with intact 
Ara h 6. Open squares: Inhibition with post-translationally cleaved Ara h 6. 

 
Presence of Post-Translationally Cleaved Ara h 6 in Various Peanut Market Types 
In order to further establish the relevance of pAra h 6, the occurrence and abundance in 
various peanut types was investigated. The four main market types commonly consumed 
in the US (i.e., Runner, Virginia, Spanish, and Valencia), as well as SRM 2387 peanut butter, 
were analyzed for protein profile on SDS-PAGE. By comparing with the purified forms of 
Ara h 6, it is shown that all samples contain bands corresponding with both intact Ara h 6 
and pAra h 6 (Fig. 7A). Reactivity of these bands with the polyclonal antibody reactive for 
Ara h 6 supports that these bands are indeed of Ara h 6 identify (Fig. 7B, boxed area), 
although it cannot be excluded that they may contain Ara h 2 as well, based on the speci-
ficity of this polyclonal antibody.29 The reactive band corresponding with pAra h 6 is found 
in all peanut types as well as in peanut butter and is less intense than the band correspond-
ing with intact Ara h 6 (Fig. 7B). Based on the data presented in Figure 4, it is known that 
pAra h 6 is less reactive than intact Ara h 6 with this polyclonal antibody, which makes it 
difficult to estimate the ratio of the amounts of intact Ara h 6 and pAra h 6 in the different 
samples. 
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Figure 7. SDS-PAGE profiles of various peanut market types and intact and post-transla-
tionally cleaved Ara h 6. (A) SDS-PAGE (reducing conditions). (B) Westernblot using poly-
clonal antibodies (Morinaga) against Ara h 2 and Ara h 6. M: marker proteins (indicated 
left in kilodalton). PB: peanut butter. RN: Runner peanut. SP: Spanish peanut. VA: Valen-
cia peanut. VG: Virginia peanut. h2: Ara h 2. ih6: intact Ara h 6. ph6: posttranslationally 
cleaved Ara h 6. The boxed area in panel B indicates the band of pAra h 6 that was de-
tected by Western blotting. 

 
Reversed-phase-HPLC was used to further investigate the occurrence of pAra h 6 in 

peanut. Peanut extract shows various peaks in the area where Ara h 6 elutes (Fig. 8A). 
Using purified intact Ara h 6 and purified pAra h 6 (Fig. 8B), the four main peaks were 
assigned: Peaks 5 and 6 represent intact Ara h 6, and peaks 2 and 4 represent pAra h 6. The 
fact that for each form of Ara h 6 two peaks are found may be explained by the presence of 
different gene products (UniProt IDs Q647G9 and A1DZE9) or by loss of N- or C-terminal 
amino acids, similar to what has been described for Ara h 2.12 This has not been further 
investigated. Two smaller peaks can be observed for peanut extract, and these are at-
tributed to the intermediate forms of pAra h 6 that show various peaks matching with 
peaks 1 and 3 and also several that are overlapping with intact Ara h 6 and pAra h 6 (not 
shown). Contribution of the individual peaks to the Ara h 6 area as presented in Figure 7A 
was calculated for the four peanut types. Intact Ara h 6 constitutes approximately half of 
the Ara h 6 content in peanut, although small differences are observed between peanut 
types (Table 2). Consequently, the other half of the Ara h 6 content comes from pAra h 6, 
indicating an important contribution of pAra h 6. 
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Figure 8. Reversed-phase UPLC profiles of various peanut market types and intact and 
post-translationally cleaved Ara h 6. (A) Virginia peanut. (B) Intact (light gray chromato-
gram) and post-translationally cleaved Ara h 6 (dark gray chromatogram). 

 
Table 2. Percentage of Intact and Post-Translationally Cleaved Ara h 6 in Different Peanut Market Types 

 

rp-UPLC fractions 

 iAra h6  pAra h 6 
 

(P5 + P6) 

 Fully 
cleaved 

 
All forms 

P1 P2 P3 P4 P5 P6   (P2 + P4)  (P1 + P2 + P3 + P4) 
Runner 2.3 21.4 5.2 24.3 24.9 21.9  46.8  45.7  53.2 
Spanish 2.0 16.8 4.6 22.4 26.5 27.7  54.2  39.2  45.8 
Valencia 2.8 19.2 5.1 24.1 24.4 24.5  48.8  43.3  51.2 
Virginia 2.9 21.9 6.3 25.5 22.6 20.8  43.4  47.4  56.6 
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Combined with the observation that pAra h6 has comparable IgE binding potency as 
intact Ara h 6 (Fig. 6), its high abundance in all four main market types of peanut com-
monly grown and consumed in the US makes pAra h 6 an allergen that must be taken into 
account when Ara h 6 is investigated in peanut-containing products. 
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