315 research outputs found

    Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    Full text link
    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal

    Using confirmatory factor analysis to evaluate construct validity of the Brief Pain Inventory (BPI)

    Get PDF
    Context: The Brief Pain Inventory (BPI) is a frequently used instrument designed to assess the patient-reported outcome of pain. The majority of factor analytic studies have found a two-factor (i.e., pain intensity and pain interference) structure for this instrument; however, because the BPI was developed with an a priori hypothesis of the relationship among its items, it follows that construct validity investigations should use confirmatory factor analysis (CFA). Objectives: The purpose of this work was to establish the construct validity of the BPI using a CFA framework and demonstrate factorial invariance using a range of demographic variables. Methods: A retrospective CFA was completed in a sample of individuals diagnosed with HIV/AIDS and cancer (n = 364; 63% male; age 21-92 years, M = 51.80). A baseline one-factor model was compared against two-factor and three-factor models (i.e., pain intensity, activity interference, and affective interference) that were developed based on the hypothetical design of the instrument. Results: Fit indices for the three-factor model were statistically superior when compared with the one-factor model and marginally better when compared with the two-factor model. This three-factor structure was found to be invariant across disease, age, and ethnicity groups. Conclusion: The results of this study provide evidence to support a three-factor representation of the BPI, and the originally hypothesized two-factor structure. Such findings will begin to provide clinical trialists, pharmaceutical sponsors, and regulators with confidence in the psychometric properties of this instrument when considering its inclusion in clinical research

    Novel colorectal endoscopic in vivo imaging and resection practice: a short practice guide for interventional endoscopists

    Get PDF
    Colorectal cancer remains a leading cause of cancer death in the UK. With the advent of screening programmes and developing techniques designed to treat and stage colorectal neoplasia, there is increasing pressure on the colonoscopist to keep up to date with the latest practices in this area. This review looks at the basic principles behind endoscopic mucosal resection and forward to the potential endoscopic tools, including high-magnification chromoscopic colonoscopy, high-frequency miniprobe ultrasound and confocal laser scanning endomicroscopic colonoscopy, that may soon become part of routine colorectal cancer management

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    The Historical Perspective of the Problem of Interpersonal Comparisons of Utility

    Get PDF
    The starting-point of the article is the inconsistency between the established practice of acceptance in many cases, of economic policy (i.e. progressive taxation, national insurance policies) and the theoretical rejection of interpersonal comparisons of utility who see it as an unscientific value judgement. The inconsistency is explained by identifying three groups of theorists: (1) those who thought of comparability as a value judgement and unacceptable for economic policy considerations (positivists), (2) those who agreed with the positivists, on the normative nature of comparability but accepted it as a basis for economic policy, and (3) those who thought of it as part of a scientific economics. The implication was that, despite the dominance of positivist methodology in other sub-fields, the historical experience points to the difficulty of applying positivist methodology to the issue of comparability. If the inconsistency is thus due to the inappropriateness of the positivist approach, the only possible solution is the explicit abandonment of this approach at least in matters related to the collective aspects of economics

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
    corecore