11 research outputs found

    Algoritmia de la ordenación eficiente : Necesidad de ordenar eficientemente análisis algorítmico

    Get PDF
    Es sabido que los métodos de ordenación, son materia de estudio en las universidades, ya que permiten la comprensión de la lógica de programación, como así también el análisis de la complejidad y eficiencia de los mismos. Por ello este trabajo fue desarrollado en el marco del cursado de la Asignatura “Algoritmos y Estructuras de Datos II” en el segundo cuatrimestre de la carrera de Licenciatura en Sistemas de la Información de la Facultad de Ciencias Exactas y Naturales de la Universidad Nacional del Nordeste. Este trabajo está orientado a lograr, el estudio de los algoritmos de ordenamiento, y los grados de eficiencia de cada uno de los algoritmos tratados. A los fines indicados se tratará de conocer los métodos desde el más simple hasta el más complejo, que se han incluido en esta investigación, para ello se describirá cada método investigado y se analizará tanto su complejidad algorítmica vista desde un punto de vista teórico, como también en las comparaciones de tiempo de ejecución, requisitos para ejecutarlos, funcionalidades y alcance. Arribando a conclusiones, basándose en la ejecución de una aplicación, codificada en Lenguaje Pascal y que permita medir el tiempo de los métodos de ordenamiento tratados en este trabajo.Sociedad Argentina de Informática e Investigación Operativ

    Propuesta Ágil para Gestionar Proyectos Educativos Informáticos en Educación Superior

    Get PDF
    El artículo describe la gestión ágil de proyectos educativos informáticos en contextos de educación superior en la Argentina. En particular, esta experiencia se sitúa en relación con el proceso de enseñanza y aprendizaje significativo debido la importancia del desarrollo del software en todas sus dimensiones y aplicaciones. En el método se describen los elementos adaptados de SCRUM, metodología de trabajo ágil iterativa e incremental para la gestión de proyectos, y cómo se incorpora un sistema de matrices de tres categorías. El resultado de esta innovadora integración se plasma en una propuesta ágil que integra prácticas y artefactos de SCRUM con un sistema de matrices categoriales orientadas a presentar: los objetivos correlacionados, la relación de actores e instrumentos de recolección de datos y una matriz que refleja: la Apropiación de aprendizajes para el uso de una metodología ágil, el Reconocimiento de los roles de los integrantes del equipo, la Comunicación eficaz para la interacción de los miembros del equipo. La propuesta se valida considerando la presentación y exposición de los trabajos integradores en una asignatura de la carrera Licenciatura en Sistemas de Información. Finalmente, es menester abordar el proceso de enseñanzaaprendizaje significativo situado en contexto ágiles atendiendo a la complejidad y emergentes continuos en la actual sociedad del conocimiento. The article describes an agile managing for educational IT projects in higher education. Argentina is the reference context. In particular, the experience is placed in relation to the process of teaching and learning meaning, considering the software development in all its dimensions and applications. The method describes the elements adapted from SCRUM, iterative and incremental agile working methodology for project management, and how a three-category matrix system is incorporated. The result of this innovative integration is embodied in an agile proposal that integrates SCRUM practices and artifacts with a system of categorical matrices oriented to present: the correlated objectives, the relationship of actors and data collection instruments and the last one containing the following items: the appropriation of learning for the use of an agile methodology, the recognition of the roles of the team members, the effective communication for the interaction of the team members. The proposal is validated considering the presentation and exposition of the integrative works in a subject of the Information Systems degree. Finally, it is necessary to approach the process of significant teaching-learning located in an agile context, taking into account the complexity and continuous emergences in the current knowledge society

    Students' perspectives on first year coursework in times of pandemic

    Get PDF
    El escenario de pandemia por COVID-19 repercutió en el ámbito educativo, desencadenando la implementación de acciones para garantizar la continuidad pedagógica, las cuales implicaron el pasaje de la modalidad de enseñanza presencial a la remota de emergencia. Ante este panorama, el presente trabajo se centra en conocer la perspectiva de los estudiantes sobre la experiencia del cursado de la asignatura Sistemas y Organizaciones de la Licenciatura en Sistemas de Información de la Facultad de Ciencias Exactas y Naturales y Agrimensura de la Universidad Nacional del Nordeste, en modalidad remota. Es un estudio descriptivo, con abordaje cuanti cualitativo. Para el relevamiento de datos se diseñó un cuestionario, el cual fue aplicado a estudiantes, al finalizar el cursado. Los resultados permiten identificar y describir sus condiciones de acceso y uso de tecnologías para el estudio, las percepciones sobre el desarrollo de la asignatura y el proceso de aprendizaje remoto, así como también, sus perspectivas a futuro en relación al cursado de la carrera en esta modalidad.The COVID-19 pandemic scenario had repercussions in the educational field, triggering the implementation of actions to guarantee pedagogical continuity, which implied the transition from the face-to-face teaching modality to the remote emergency one. Given this scenario, this paper focuses on knowing the students' perspective on the experience of the Information Systems and Organizations course at the Facultad de Ciencias Exactas y Naturales y Agrimensura de la Universidad Nacional del Nordeste, in remote modality. It is a descriptive study, with a qualitative approach. A questionnaire was designed for data collection, which was applied to students of the subject, at the end of the course. The results allow us to identify and describe their conditions of access and use of technologies for the study, the perceptions about the development of the subject and the process of remote learning, as well as their future perspectives in relation to the course of study in this modality.Facultad de Informátic

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Propuesta Ágil para Gestionar Proyectos Educativos Informáticos en Educación Superior

    No full text
    El artículo describe la gestión ágil de proyectos educativos informáticos en contextos de educación superior en la Argentina. En particular, esta experiencia se sitúa en relación con el proceso de enseñanza y aprendizaje significativo debido la importancia del desarrollo del software en todas sus dimensiones y aplicaciones. En el método se describen los elementos adaptados de SCRUM, metodología de trabajo ágil iterativa e incremental para la gestión de proyectos, y cómo se incorpora un sistema de matrices de tres categorías. El resultado de esta innovadora integración se plasma en una propuesta ágil que integra prácticas y artefactos de SCRUM con un sistema de matrices categoriales orientadas a presentar: los objetivos correlacionados, la relación de actores e instrumentos de recolección de datos y una matriz que refleja: la Apropiación de aprendizajes para el uso de una metodología ágil, el Reconocimiento de los roles de los integrantes del equipo, la Comunicación eficaz para la interacción de los miembros del equipo. La propuesta se valida considerando la presentación y exposición de los trabajos integradores en una asignatura de la carrera Licenciatura en Sistemas de Información. Finalmente, es menester abordar el proceso de enseñanzaaprendizaje significativo situado en contexto ágiles atendiendo a la complejidad y emergentes continuos en la actual sociedad del conocimiento.</jats:p

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    Abstract Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.</jats:p

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science
    corecore