48 research outputs found

    Fazit des Sonderheftes: Die GLES Open Science Challenge 2021 im Rückblick: Erfahrungen und Lessons Learned

    Get PDF
    The GLES Open Science Challenge 2021 was a pilot project aimed at demonstrating that registered reports are an appropriate and beneficial publication format in quantitative political science that helps to increase transparency and replicability in the research process and thus yields substantial and relevant contributions to our discipline. The project resulted in the publication of this special issue, which includes seven registered reports based on data from the German Longitudinal Election Study (GLES) collected in the context of the 2021 German federal election. This concluding article of the special issue brings together the perspectives of the participating authors, reviewers, organizers, and editors in order to take stock of the different experiences gained and lessons learned in the course of the project. We are confident that future projects of a similar nature in political science, as well as authors, reviewers, and editors of registered reports, will benefit from these reflections.Die GLES Open Science Challenge 2021 ist ein Pilotprojekt, das zeigt, dass Registered Reports ein geeignetes und gewinnbringendes Publikationsformat in der quantitativen Politikwissenschaft sind, die dazu beitragen können, die Transparenz und Replizierbarkeit im Forschungsprozess zu erhöhen und somit substanzielle und relevante Beiträge für unsere Disziplin zu liefern. Das Ergebnis ist die Veröffentlichung dieses Sonderheftes mit sieben Registered Reports, die auf Daten der German Longitudinal Election Study (GLES) basieren, die im Rahmen der Bundestagswahl 2021 erhoben wurden. Dieser abschließende Artikel des Sonderheftes bringt die Perspektiven von Autor*innen, Gutachter*innen, Organisator*innen und Herausgeber*innen zusammen, um eine Bilanz der verschiedenen Erfahrungen und Lehren zu ziehen, die im Laufe dieses Projektes gewonnen wurden

    Evolution of Vitamin B 2 Biosynthesis. A Novel Class of Riboflavin Synthase in Archaea †

    Get PDF
    The open reading frame MJ1184 of Methanococcus jannaschii with similarity to riboflavin synthase of Methanothermobacter thermoautotrophicus was cloned into an expression vector but was poorly expressed in an Escherichia coli host strain. However, a synthetic open reading frame that was optimized for expression in E. coli directed the synthesis of abundant amounts of a protein with an apparent subunit mass of 17.5 kDa. The protein was purified to apparent homogeneity. Hydrodynamic studies indicated a relative mass of 88 kDa suggesting a homopentamer structure. The enzyme was shown to catalyze the formation of riboflavin from 6,7-dimethyl-8-ribityllumazine at a rate of 24 nmol mg K1 min K1 at 40 8C. Divalent metal ions, preferably manganese or magnesium, are required for maximum activity. In contrast to pentameric archaeal type riboflavin synthases, orthologs from plants, fungi and eubacteria are trimeric proteins characterized by an internal sequence repeat with similar folding patterns. In these organisms the reaction is achieved by binding the two substrate molecules in an antiparallel orientation. With the enzyme of M. jannaschii, 13 C NMR spectroscopy with 13 C-labeled 6,7-dimethyl-8-ribityllumazine samples as substrates showed that the regiochemistry of the dismutation reaction is the same as observed in eubacteria and eukaryotes, however, in a non-pseudo-c 2 symmetric environment. Whereas the riboflavin synthases of M. jannaschii and M. thermoautotrophicus are devoid of similarity with those of eubacteria and eukaryotes, they have significant sequence similarity with 6,7-dimethyl-8-ribityllumazine synthases catalyzing the penultimate step of riboflavin biosynthesis. 6,7-Dimethyl-8-ribityllumazine synthase and the archaeal riboflavin synthase appear to have diverged early in the evolution of Archaea from a common ancestor. Some Archaea have eubacterial type riboflavin synthases which may have been acquired by lateral gene transfer

    Special issue conclusion : The GLES Open Science Challenge 2021 in hindsight: experiences gained and lessons learned

    Get PDF
    Die GLES Open Science Challenge 2021 ist ein Pilotprojekt, das zeigt, dass Registered Reports ein geeignetes und gewinnbringendes Publikationsformat in der quantitativen Politikwissenschaft sind, die dazu beitragen können, die Transparenz und Replizierbarkeit im Forschungsprozess zu erhöhen und somit substanzielle und relevante Beiträge für unsere Disziplin zu liefern. Das Ergebnis ist die Veröffentlichung dieses Sonderheftes mit sieben Registered Reports, die auf Daten der German Longitudinal Election Study (GLES) basieren, die im Rahmen der Bundestagswahl 2021 erhoben wurden. Dieser abschließende Artikel des Sonderheftes bringt die Perspektiven von Autor*innen, Gutachter*innen, Organisator*innen und Herausgeber*innen zusammen, um eine Bilanz der verschiedenen Erfahrungen und Lehren zu ziehen, die im Laufe dieses Projektes gewonnen wurden

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Ambient-noise tomography of the wider Vienna Basin region

    Get PDF
    We present a new 3-D shear-velocity model for the top 30 km of the crust in the wider Vienna Basin region based on surface waves extracted from ambient-noise cross-correlations. We use continuous seismic records of 63 broad-band stations of the AlpArray project to retrieve interstation Green’s functions from ambient-noise cross-correlations in the period range from 5 to 25 s. From these Green’s functions, we measure Rayleigh group traveltimes, utilizing all four components of the cross-correlation tensor, which are associated with Rayleigh waves (ZZ, RR, RZ and ZR), to exploit multiple measurements per station pair. A set of selection criteria is applied to ensure that we use high-quality recordings of fundamental Rayleigh modes. We regionalize the interstation group velocities in a 5 km × 5 km grid with an average path density of ∼20 paths per cell. From the resulting group-velocity maps, we extract local 1-D dispersion curves for each cell and invert all cells independently to retrieve the crustal shear-velocity structure of the study area. The resulting model provides a previously unachieved lateral resolution of seismic velocities in the region of ∼15 km. As major features, we image the Vienna Basin and Little Hungarian Plain as low-velocity anomalies, and the Bohemian Massif with high velocities. The edges of these features are marked with prominent velocity contrasts correlated with faults, such as the Alpine Front and Vienna Basin transfer fault system. The observed structures correlate well with surface geology, gravitational anomalies and the few known crystalline basement depths from boreholes. For depths larger than those reached by boreholes, the new model allows new insight into the complex structure of the Vienna Basin and surrounding areas, including deep low-velocity zones, which we image with previously unachieved detail. This model may be used in the future to interpret the deeper structures and tectonic evolution of the wider Vienna Basin region, evaluate natural resources, model wave propagation and improve earthquake locations, among others

    Arrival angles of teleseismic fundamental mode Rayleigh waves across the AlpArray

    Get PDF
    The dense AlpArray network allows studying seismic wave propagation with high spatial resolution. Here we introduce an array approach to measure arrival angles of teleseismic Rayleigh waves. The approach combines the advantages of phase correlation as in the two-station method with array beamforming to obtain the phase-velocity vector. 20 earthquakes from the first two years of the AlpArray project are selected, and spatial patterns of arrival-angle deviations across the AlpArray are shown in maps, depending on period and earthquake location. The cause of these intriguing spatial patterns is discussed. A simple wave-propagation modelling example using an isolated anomaly and a Gaussian beam solution suggests that much of the complexity can be explained as a result of wave interference after passing a structural anomaly along the wave paths. This indicates that arrival-angle information constitutes useful additional information on the Earth structure, beyond what is currently used in inversions

    Shear-wave velocity structure beneath the Dinarides from the inversion of Rayleigh-wave dispersion

    Get PDF
    Highlights • Rayleigh-wave phase velocity in the wider Dinarides region using the two-station method. • Uppermost mantle shear-wave velocity model of the Dinarides-Adriatic Sea region. • Velocity model reveals a robust high-velocity anomaly present under the whole Dinarides. • High-velocity anomaly reaches depth of 160 km in the northern Dinarides to more than 200 km under southern Dinarides. • New structural model incorporating delamination as one of the processes controlling the continental collision in the Dinarides. The interaction between the Adriatic microplate (Adria) and Eurasia is the main driving factor in the central Mediterranean tectonics. Their interplay has shaped the geodynamics of the whole region and formed several mountain belts including Alps, Dinarides and Apennines. Among these, Dinarides are the least investigated and little is known about the underlying geodynamic processes. There are numerous open questions about the current state of interaction between Adria and Eurasia under the Dinaric domain. One of the most interesting is the nature of lithospheric underthrusting of Adriatic plate, e.g. length of the slab or varying slab disposition along the orogen. Previous investigations have found a low-velocity zone in the uppermost mantle under the northern-central Dinarides which was interpreted as a slab gap. Conversely, several newer studies have indicated the presence of the continuous slab under the Dinarides with no trace of the low velocity zone. Thus, to investigate the Dinaric mantle structure further, we use regional-to-teleseismic surface-wave records from 98 seismic stations in the wider Dinarides region to create a 3D shear-wave velocity model. More precisely, a two-station method is used to extract Rayleigh-wave phase velocity while tomography and 1D inversion of the phase velocity are employed to map the depth dependent shear-wave velocity. Resulting velocity model reveals a robust high-velocity anomaly present under the whole Dinarides, reaching the depths of 160 km in the north to more than 200 km under southern Dinarides. These results do not agree with most of the previous investigations and show continuous underthrusting of the Adriatic lithosphere under Europe along the whole Dinaric region. The geometry of the down-going slab varies from the deeper slab in the north and south to the shallower underthrusting in the center. On-top of both north and south slabs there is a low-velocity wedge indicating lithospheric delamination which could explain the 200 km deep high-velocity body existing under the southern Dinarides

    Crustal Thinning From Orogen to Back-Arc Basin: The Structure of the Pannonian Basin Region Revealed by P-to-S Converted Seismic Waves

    Get PDF
    We present the results of P-to-S receiver function analysis to improve the 3D image of the sedimentary layer, the upper crust, and lower crust in the Pannonian Basin area. The Pannonian Basin hosts deep sedimentary depocentres superimposed on a complex basement structure and it is surrounded by mountain belts. We processed waveforms from 221 three-component broadband seismological stations. As a result of the dense station coverage, we were able to achieve so far unprecedented spatial resolution in determining the velocity structure of the crust. We applied a three-fold quality control process; the first two being applied to the observed waveforms and the third to the calculated radial receiver functions. This work is the first comprehensive receiver function study of the entire region. To prepare the inversions, we performed station-wise H-Vp/Vs grid search, as well as Common Conversion Point migration. Our main focus was then the S-wave velocity structure of the area, which we determined by the Neighborhood Algorithm inversion method at each station, where data were sub-divided into back-azimuthal bundles based on similar Ps delay times. The 1D, nonlinear inversions provided the depth of the discontinuities, shear-wave velocities and Vp/Vs ratios of each layer per bundle, and we calculated uncertainty values for each of these parameters. We then developed a 3D interpolation method based on natural neighbor interpolation to obtain the 3D crustal structure from the local inversion results. We present the sedimentary thickness map, the first Conrad depth map and an improved, detailed Moho map, as well as the first upper and lower crustal thickness maps obtained from receiver function analysis. The velocity jump across the Conrad discontinuity is estimated at less than 0.2 km/s over most of the investigated area. We also compare the new Moho map from our approach to simple grid search results and prior knowledge from other techniques. Our Moho depth map presents local variations in the investigated area: the crust-mantle boundary is at 20–26 km beneath the sedimentary basins, while it is situated deeper below the Apuseni Mountains, Transdanubian and North Hungarian Ranges (28–33 km), and it is the deepest beneath the Eastern Alps and the Southern Carpathians (40–45 km). These values reflect well the Neogene evolution of the region, such as crustal thinning of the Pannonian Basin and orogenic thickening in the neighboring mountain belts

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd
    corecore