38 research outputs found

    Preserving Both Privacy and Utility in Network Trace Anonymization

    Full text link
    As network security monitoring grows more sophisticated, there is an increasing need for outsourcing such tasks to third-party analysts. However, organizations are usually reluctant to share their network traces due to privacy concerns over sensitive information, e.g., network and system configuration, which may potentially be exploited for attacks. In cases where data owners are convinced to share their network traces, the data are typically subjected to certain anonymization techniques, e.g., CryptoPAn, which replaces real IP addresses with prefix-preserving pseudonyms. However, most such techniques either are vulnerable to adversaries with prior knowledge about some network flows in the traces, or require heavy data sanitization or perturbation, both of which may result in a significant loss of data utility. In this paper, we aim to preserve both privacy and utility through shifting the trade-off from between privacy and utility to between privacy and computational cost. The key idea is for the analysts to generate and analyze multiple anonymized views of the original network traces; those views are designed to be sufficiently indistinguishable even to adversaries armed with prior knowledge, which preserves the privacy, whereas one of the views will yield true analysis results privately retrieved by the data owner, which preserves the utility. We present the general approach and instantiate it based on CryptoPAn. We formally analyze the privacy of our solution and experimentally evaluate it using real network traces provided by a major ISP. The results show that our approach can significantly reduce the level of information leakage (e.g., less than 1\% of the information leaked by CryptoPAn) with comparable utility

    Tuning of catalytic sites in Pt/TiO2 catalysts for chemoselective hydrogenation of 3-nitrostyrene

    Get PDF
    The catalytic activities of supported metal nanoparticles can be tuned by appropriate design of synthesis strategies. Each step in a catalyst synthesis method can play an important role in preparing the most efficient catalyst. Here we report the careful manipulation of the post-synthetic heat treatment procedure—together with control over the metal loading—to prepare a highly efficient 0.2 wt% Pt/TiO2 catalyst for the chemoselective hydrogenation of 3-nitrostyrene. For Pt/TiO2 catalysts with 0.2 and 0.5 wt% loading levels, reduction at 450 °C induces the coverage of TiOx over Pt nanoparticles through a strong metal–support interaction, which is detrimental to their catalytic activities. However, this can be avoided by following calcination treatment with reduction (both at 450 °C), allowing us to prepare an exceptionally active catalyst. Detailed characterization has revealed that the peripheral sites at the Pt/TiO2 interface are the most likely active sites for this hydrogenation reactio

    Tuning of catalytic sites in Pt/TiO<sub>2</sub> catalysts for the chemoselective hydrogenation of 3-nitrostyrene

    Get PDF
    The catalytic activities of supported metal nanoparticles can be tuned by appropriate design of synthesis strategies. Each step in a catalyst synthesis method can play an important role in preparing the most efficient catalyst. Here we report the careful manipulation of the post-synthetic heat treatment procedure—together with control over the metal loading—to prepare a highly efficient 0.2 wt% Pt/TiO2 catalyst for the chemoselective hydrogenation of 3-nitrostyrene. For Pt/TiO2 catalysts with 0.2 and 0.5 wt% loading levels, reduction at 450 °C induces the coverage of TiOx over Pt nanoparticles through a strong metal–support interaction, which is detrimental to their catalytic activities. However, this can be avoided by following calcination treatment with reduction (both at 450 °C), allowing us to prepare an exceptionally active catalyst. Detailed characterization has revealed that the peripheral sites at the Pt/TiO2 interface are the most likely active sites for this hydrogenation reactio

    CD4+ and CD8+ T cells and antibodies are associated with protection against Delta vaccine breakthrough infection: a nested case-control study within the PITCH study

    Get PDF
    Serological correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection after vaccination ("vaccine breakthrough") have been described. However, T cell correlates of protection against breakthrough are incompletely defined, especially the specific contributions of CD4+ and CD8+ T cells. Here, 279 volunteers in the Protective Immunity from T Cells in Healthcare Workers (PITCH) UK cohort study were enrolled in a nested case-control study. Cases were those who tested SARS-CoV-2 PCR or lateral flow device (LFD) positive after two vaccine doses during the Delta-predominant era (n = 32), while controls were those who did not report a positive test or undergo anti-nucleocapsid immunoglobulin G (IgG) seroconversion during this period (n = 247). Previous SARS-CoV-2 infection prior to vaccination was associated with reduced odds of vaccine breakthrough. Using samples from 28 d after the second vaccine dose, before all breakthroughs occurred, we observed future cases had lower ancestral spike (S)- and receptor binding domain-specific IgG titers and S1- and S2-specific T cell interferon gamma (IFNγ) responses compared with controls, although these differences did not persist when individuals were stratified according to previous infection status before vaccination. In a subset of matched infection-naïve cases and controls, vaccine breakthrough cases had lower CD4+ and CD8+ IFNγ and tumor necrosis factor (TNF) responses to Delta S peptides compared with controls. For CD8+ responses, this difference appeared to be driven by reduced responses to Delta compared with ancestral peptides among cases; this reduced response to Delta peptides was not observed in controls. Our findings support a protective role for T cells against Delta breakthrough infection. IMPORTANCE Defining correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infection informs vaccine policy for booster doses and future vaccine designs. Existing studies demonstrate humoral correlates of protection, but the role of T cells in protection is still unclear. In this study, we explore antibody and T cell immune responses associated with protection against Delta variant vaccine breakthrough infection in a well-characterized cohort of UK Healthcare Workers (HCWs). We demonstrate evidence to support a role for CD4+ and CD8+ T cells as well as antibodies against Delta vaccine breakthrough infection. In addition, our results suggest a potential role for cross-reactive T cells in vaccine breakthrough

    Thermal niche evolution and geographical range expansion in a species complex of western Mediterranean diving beetles

    Get PDF
    [Background] Species thermal requirements are one of the principal determinants of their ecology and biogeography, although our understanding of the interplay between these factors is limited by the paucity of integrative empirical studies. Here we use empirically collected thermal tolerance data in combination with molecular phylogenetics/phylogeography and ecological niche modelling to study the evolution of a clade of three western Mediterranean diving beetles, the Agabus brunneus complex.[Results] The preferred mitochondrial DNA topology recovered A. ramblae (North Africa, east Iberia and Balearic islands) as paraphyletic, with A. brunneus (widespread in the southwestern Mediterranean) and A. rufulus (Corsica and Sardinia) nested within it, with an estimated origin between 0.60-0.25 Ma. All three species were, however, recovered as monophyletic using nuclear DNA markers. A Bayesian skyline plot suggested demographic expansion in the clade at the onset of the last glacial cycle. The species thermal tolerances differ significantly, with A. brunneus able to tolerate lower temperatures than the other taxa. The climatic niche of the three species also differs, with A. ramblae occupying more arid and seasonal areas, with a higher minimum temperature in the coldest month. The estimated potential distribution for both A. brunneus and A. ramblae was most restricted in the last interglacial, becoming increasingly wider through the last glacial and the Holocene.[Conclusions] The A. brunneus complex diversified in the late Pleistocene, most likely in south Iberia after colonization from Morocco. Insular forms did not differentiate substantially in morphology or ecology, but A. brunneus evolved a wider tolerance to cold, which appeared to have facilitated its geographic expansion. Both A. brunneus and A. ramblae expanded their ranges during the last glacial, although they have not occupied areas beyond their LGM potential distribution except for isolated populations of A. brunneus in France and England. On the islands and possibly Tunisia secondary contact between A. brunneus and A. ramblae or A. rufulus has resulted in introgression. Our work highlights the complex dynamics of speciation and range expansions within southern areas during the last glacial cycle, and points to the often neglected role of North Africa as a source of European biodiversity.This work was supported by an FPI grant to AH-G and projects CGL2007-61665 and CGL2010-15755 from the Spanish government to IR. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Variation of BMP3 Contributes to Dog Breed Skull Diversity

    Get PDF
    Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait
    corecore