538 research outputs found

    The Alexander-Orbach conjecture holds in high dimensions

    Full text link
    We examine the incipient infinite cluster (IIC) of critical percolation in regimes where mean-field behavior has been established, namely when the dimension d is large enough or when d>6 and the lattice is sufficiently spread out. We find that random walk on the IIC exhibits anomalous diffusion with the spectral dimension d_s=4/3, that is, p_t(x,x)= t^{-2/3+o(1)}. This establishes a conjecture of Alexander and Orbach. En route we calculate the one-arm exponent with respect to the intrinsic distance.Comment: 25 pages, 2 figures. To appear in Inventiones Mathematica

    A fast sparse block circulant matrix vector product

    Full text link
    In the context of computed tomography (CT), iterative image reconstruction techniques are gaining attention because high-quality images are becoming computationally feasible. They involve the solution of large systems of equations, whose cost is dominated by the sparse matrix vector product (SpMV). Our work considers the case of the sparse matrices being block circulant, which arises when taking advantage of the rotational symmetry in the tomographic system. Besides the straightforward storage saving, we exploit the circulant structure to rewrite the poor-performance SpMVs into a high-performance product between sparse and dense matrices. This paper describes the implementations developed for multi-core CPUs and GPUs, and presents experimental results with typical CT matrices. The presented approach is up to ten times faster than without exploiting the circulant structure.Romero Alcalde, E.; Tomás Domínguez, AE.; Soriano Asensi, A.; Blanquer Espert, I. (2014). A fast sparse block circulant matrix vector product. En Euro-Par 2014 Parallel Processing. Springer. 548-559. doi:10.1007/978-3-319-09873-9_46S548559Bian, J., Siewerdsen, J.H., Han, X., Sidky, E.Y., Prince, J.L., Pelizzari, C.A., Pal, X.: Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam ct. Physics in Medicine and Biology 55, 6575–6599 (2010)Dalton, S., Bell, N.: CUSP: A C++ templated sparse matrix library version 0.4.0 (2014), http://cusplibrary.github.com/Feldkamp, L., Davis, L., Kress, J.: Practical cone-beam algorithm. Journal of the Optical Society of America 1, 612–619 (1984)Ganine, V., Legrand, M., Michalska, H., Pierre, C.: A sparse preconditioned iterative method for vibration analysis of geometrically mistuned bladed disks. Computers & Structures 87(5-6), 342–354 (2009)Hara, A.K., Paden, R.G., Silva, A.C., Kujak, J.L., Lawder, H.J., Pavlicek, W.: Iterative reconstruction technique for reducing body radiation dose at CT: Feasibility study. American Journal of Roentgenology 193, 764–771 (2009)Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)Im, E.J., Yelick, K., Vuduc, R.: Sparsity: Optimization framework for sparse matrix kernels. International Journal of High Performance Computing Applications 18(1), 135–158 (2004)Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001), http://www.scipy.org/Kaveh, A., Rahami, H.: Block circulant matrices and applications in free vibration analysis of cyclically repetitive structures. Acta Mechanica 217(1-2), 51–62 (2011)Kourtis, K., Goumas, G., Koziris, N.: Optimizing sparse matrix-vector multiplication using index and value compression. In: Proceedings of the 5th Conference on Computing Frontiers, CF 2008, pp. 87–96. ACM, New York (2008)Krotkiewski, M., Dabrowski, M.: Parallel symmetric sparse matrix–vector product on scalar multi-core CPUs. Parallel Computing 36(4), 181–198 (2010)Lee, B., Vuduc, R., Demmel, J., Yelick, K.: Performance models for evaluation and automatic tuning of symmetric sparse matrix-vector multiply. In: International Conference on Parallel Processing, ICPP 2004, vol. 1, pp. 169–176 (2004)Leroux, J.D., Selivanov, V., Fontaine, R., Lecomte, R.: Accelerated iterative image reconstruction methods based on block-circulant system matrix derived from a cylindrical image representation. In: Nuclear Science Symposium Conference Record, NSS 2007, vol. 4, pp. 2764–2771. IEEE (2007)NVIDIA: CUSPARSE library (2014), https://developer.nvidia.com/cusparsePan, X., Sidky, E.Y., Vannier, M.: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Problems 25, 123009 (2008)Rodríguez-Alvarez, M.J., Soriano, A., Iborra, A., Sánchez, F., González, A.J., Conde, P., Hernández, L., Moliner, L., Orero, A., Vidal, L.F., Benlloch, J.M.: Expectation maximization (EM) algorithms using polar symmetries for computed tomography CT image reconstruction. Computers in Biology and Medicine 43(8), 1053–1061 (2013)Sheep, L., Vardi, Y.: Maximum likelihood reconstruction for emmision tomography. IEEE Transactions on Medical Imaging 1, 113–122 (1982)Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Physics in Medicine and Biology 53, 4777–4807 (2008)Soriano, A., Rodríguez-Alvarez, M.J., Iborra, A., Sánchez, F., Carles, M., Conde, P., González, A.J., Hernández, L., Moliner, L., Orero, A., Vidal, L.F., Benlloch, J.M.: EM tomographic image reconstruction using polar voxels. Journal of Instrumentation 8, C01004 (2013)Thibaudeau, C., Leroux, J.D., Pratte, J.F., Fontaine, R., Lecomte, R.: Cylindrical and spherical ray-tracing for ct iterative reconstruction. In: 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 4378–4381 (2011)Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned sparse matrix kernels. Journal of Physics: Conference Series 16(1), 521 (2005)Vuduc, R.W., Moon, H.-J.: Fast sparse matrix-vector multiplication by exploiting variable block structure. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 807–816. Springer, Heidelberg (2005)Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization of sparse matrix-vector multiplication on emerging multicore platforms. Parallel Computing 35(3), 178–194 (2009

    Pre-M Phase-promoting Factor Associates with Annulate Lamellae in Xenopus Oocytes and Egg Extracts

    Get PDF
    We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates

    Measurement of single pi0 production in neutral current neutrino interactions with water by a 1.3 GeV wide band muon neutrino beam

    Full text link
    Neutral current single pi0 production induced by neutrinos with a mean energy of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near detector of the K2K long baseline neutrino experiment. The cross section for this process relative to the total charged current cross section is measured to be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of produced pi0s is measured and is found to be in good agreement with an expectation from the present knowledge of the neutrino cross sections.Comment: 6 pages, 4 figures, Submitted to Phys. Lett.

    Evidence for muon neutrino oscillation in an accelerator-based experiment

    Get PDF
    We present results for muon neutrino oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced muon neutrino beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy dependent disappearance of muon neutrino, which we presume have oscillated to tau neutrino. The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).Comment: 5 pages, 4 figure

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore