115 research outputs found

    Towards the quantitative and physically-based interpretation of solar-induced vegetation fluorescence retrieved from global imaging

    Get PDF
    Due to emerging high spectral resolution, remote sensing techniques and ongoing developments to retrieve the spectrally resolved vegetation fluorescence spectrum from several scales, the light reactions of photosynthesis are receiving a boost of attention for the monitoring of the Earth's carbon balance. Sensor-retrieved vegetation fluorescence (from leaf, tower, airborne or satellite scale) originating from the excited antenna chlorophyll a molecule has become a new quantitative biophysical vegetation parameter retrievable from space using global imaging techniques. However, to retrieve the actual quantum efficiencies, and hence a true photosynthetic status of the observed vegetation, all signal distortions must be accounted for, and a high-precision true vegetation reflectance must be resolved. ESA's upcoming Fluorescence Explorer aims to deliver such novel products thanks to technological and instrumental advances, and by sophisticated approaches that will enable a deeper understanding of the mechanics of energy transfer underlying the photosynthetic process in plant canopies and ecosystems

    To Catch a Comet: Learning from Halley's

    Get PDF

    Development of atmospheric correction algorithms for very high spectral and spatial resolution images: application to SEOSAT and the FLEX/Sentinel-3 missions

    Get PDF
    Advanced high spectral and spatial resolution imager spectrometers on board new generation of Earth Observation missions bring new exciting opportunities to the remote sensing scientific community. However, this progress goes hand in hand with new challenges. The exploitation of data acquired from these family of advanced instruments requires new processing algorithms able to deal with these particularities. As part of this evolution, atmospheric correction algorithms - a mandatory processing step applied prior to the Earth surface reflectance data exploitation - must be adapted or reformulated, thereby paying special attention to how atmospheric effects disturb the acquired signal in the spectral and spatial domains. For these reasons, this Thesis aims to develop new atmospheric correction strategies to be applied over very high spectral and spatial resolution data. Following this goal, this Thesis was conducted in the framework of two missions during their development phase: (1) the FLEX/Sentinel–3 tandem space mission (for high spectral resolution data) and, (2) the Ingenio/SEOsat space mission (for high spatial resolution data). In the context of these missions, an additional challenge is introduced when acquiring proximal remote sensing data for their validation. This is especially relevant for the FLEX mission, which is dedicated to monitor the weak Solar Induced Chlorophyll Fluorescence (SIF) signal. Following this motivation, the main objectives of this Thesis are threefold: The first objective involved to analyse atmospheric effects on the Ingenio/SEOsat high spatial and low spectral resolution satellite mission and to propose a new atmospheric correction strategy. This strategy was called Hybrid and combines: (1) a per–pixel atmospheric radiative transfer model inversion technique making use of auxiliary data to characterize the atmospheric state, followed by (2) an image deconvolution technique modelling the atmospheric MTF to correct for atmospheric spatial effects. The Hybrid method was applied to Sentinel–2 data, particularly over bands acquired at 10 m resolution due to its similarities with the Ingenio/SEOsat mission. The second objective involved to define a novel atmospheric correction strategy for the FLEX/Sentinel-3 tandem mission. The proposed strategy is a two-steps method where information from Sentinel-3 instruments, OLCI and SLSTR, is first used in synergy to characterize the aerosol and water vapour presence. The high spectral resolution of FLEX data is subsequently exploited to refine the previously aerosol characterization. As part of this objective, the suitability of all the approximations assumed in the formulation proposed for the atmospheric inversion of FLEX data was validated against the FLEX mission requirements. The third objective involved to develop a strategy that deals with the atmospheric correction of very high spectral and spatial resolution data acquired at lower atmospheric scales such as Unmanned Aerial Vehicles or systems mounted on towers. In this Thesis, it was demonstrated that even when acquiring the signal at proximal remote sensing scale, i.e., few meters from the target oxygen absorption must be compensated to properly estimate SIF within these spectral regions. For this reason, a strategy to compensate for the oxygen absorption while properly dealing with the instrumental spectral response function convolution was presented and tested using simulated data. Altogether, this work identified challenges associated to atmospheric correction when applying to high spatial and especially to very high spectral resolution data. In this Thesis, adequate formulations have been developed to resolve these difficulties, and successful methodologies have been designed for the particular cases of SEOsat (high spatial resolution) and FLEX (high spectral resolution); two future remote sensing space missions that will be launched in the forthcoming years

    Discovering trends in photosynthesis using modern analytical tools: More than 100 reasons to use chlorophyll fluorescence

    Get PDF
    database, we followed the development of chlorophyll fluorescence research (CFR) during 1947–2018. We confirmed dramatic increase in diversity of CFR from late 90-ties and vigorous development of this discipline in the last ten years. They are parallel to an increase in number of research areas and institutions involved and were triggered by the accumulation of knowledge and methodological, technological, and communication advances, especially modern fluorimeters and fluorescence techniques. The network analysis of keywords and research areas confirmed CFR changed into modern, multidisciplinary, highly collaborative discipline, in which in spite of many ‘core’ disciplines as plant science, environmental sciences, agronomy/food science and technology, the promising, modern areas developed: biochemistry and molecular biology, remote sensing, and big data artificial intelligence method

    Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science

    Get PDF
    Remote sensing methods enable detection of solar-induced chlorophyll a fluorescence. However, to unleash the full potential of this signal, intensive cross-disciplinary work is required to harmonize biophysical and ecophysiological studies. For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-induced fluorescence (SIF) and its application promises to overcome spatial constraints on studies of photosynthesis, opening new research directions and opportunities in ecology, ecophysiology, biogeochemistry, agriculture and forestry. However, to unleash the full potential of SIF, intensive cross-disciplinary work is required to harmonize these new advances with the rich history of biophysical and ecophysiological studies of ChlaF, fostering the development of next-generation plant physiological and Earth-system models. Here, we introduce the scale-dependent link between SIF and photosynthesis, with an emphasis on seven remaining scientific challenges, and present a roadmap to facilitate future collaborative research towards new applications of SIF.Peer reviewe

    Assessing the utility of geospatial technologies to investigate environmental change within lake systems

    Get PDF
    Over 50% of the world's population live within 3. km of rivers and lakes highlighting the on-going importance of freshwater resources to human health and societal well-being. Whilst covering c. 3.5% of the Earth's non-glaciated land mass, trends in the environmental quality of the world's standing waters (natural lakes and reservoirs) are poorly understood, at least in comparison with rivers, and so evaluation of their current condition and sensitivity to change are global priorities. Here it is argued that a geospatial approach harnessing existing global datasets, along with new generation remote sensing products, offers the basis to characterise trajectories of change in lake properties e.g., water quality, physical structure, hydrological regime and ecological behaviour. This approach furthermore provides the evidence base to understand the relative importance of climatic forcing and/or changing catchment processes, e.g. land cover and soil moisture data, which coupled with climate data provide the basis to model regional water balance and runoff estimates over time. Using examples derived primarily from the Danube Basin but also other parts of the World, we demonstrate the power of the approach and its utility to assess the sensitivity of lake systems to environmental change, and hence better manage these key resources in the future

    Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure

    Get PDF
    Sun-induced fluorescence (SIF) has been proven to serve as a proxy of photosynthesis activity and therefore, as an early indicator of physiological alterations for global monitoring of vegetation. However, the interpretation of SIF over different spatial resolutions is critical to bridge the existing gap between local and global scales. This study provides insight into the influence of scene components, and forest structure and composition on the quantification of the red and far-red fluorescence signal as an early indicator of forest decline. The experiments were conducted over an oak forest (Quercus ilex) affected by water stress and Phytophthora infection in the southwest of Spain. SIF retrievals through the Fraunhofer Line Depth (FLD) principle with three spectral bands F (FLD3) was assessed using high resolution (60 cm) hyperspectral imagery extracting sunlit crown, full crown and aggregated pixels. Results showed the link between F (FLD3) extracted from sunlit crown pixels and the tree physiological condition in this context of disease infection, yielding significant relationships (r2=0.57, p0.05). These results demonstrate the need for methods to accurately retrieve crown SIF from aggregated pixels in heterogeneous forest canopies with large physiological variability among individual trees. This aspect is critical where structural canopy variations and the direct influence of background and shadows affect the SIF amplitude masking the natural variations caused by physiological condition. FluorFLIGHT, a modified version of the three dimensional (3-D) radiative transfer model FLIGHT was developed for this work, enabling the simulation of canopy radiance and reflectance including fluorescence effects from different spatial resolutions and percentage cover levels. The 3-D modelling approach proposed here significantly improved the relationship between Fs and F (FLD3) extracted from aggregated pixels (r2=0.70, p<0.001), performing better than when aggregation effects were not considered (r2=0.42, p<0.01). The FluorFLIGHT model used in this study improved the retrieval of SIF from aggregated pixels as a function of fractional cover, leaf area index and chlorophyll content yielding significant relationships between Fs ground-data measurements and fluorescence quantum yield estimated with FluorFLIGHT at p<0.01 (r2=0.79). The methodology presented here using FluorFLIGHT also demonstrated its capabilities for mapping SIF at the tree level for single tree assessment of forest physiological condition in the context of early disease detection.JRC.D.1-Bio-econom

    Exobiology in Earth orbit: The results of science workshops held at NASA, Ames Research Center

    Get PDF
    The Workshops on Exobiology in Earth Orbit were held to explore concepts for orbital experiments of exobiological interest and make recommendations on which classes of experiments should be carried out. Various observational and experimental opportunities in Earth orbit are described including those associated with the Space Shuttle laboratories, spacecraft deployed from the Space Shuttle and expendable launch vehicles, the Space Station, and lunar bases. Specific science issues and technology needs are summarized. Finally, a list of recommended experiments in the areas of observational exobiology, cosmic dust collection, and in situ experiments is presented

    NASA earth science and applications division: The program and plans for FY 1988-1989-1990

    Get PDF
    Described here are the Division's research goals, priorities and emphases for the next several years and an outline of longer term plans. Included are highlights of recent accomplishments, current activities in FY 1988, research emphases in FY 1989, and longer term future plans. Data and information systems, the Geodynamics Program, the Land Processes Program, the Oceanic Processes Program, the Atmospheric Dynamics and Radiation Program, the Atmospheric Chemistry Program, and space flight programs are among the topic covered
    corecore