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Jyväskylä, Jyväskylä 40014, Finland. 43 

18Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 44 

Jülich, Germany. 45 

19Biology Department, Bowdoin College, Brunswick, Maine, United States of America. 46 

 47 

*Corresponding author: joan.porcar@helsinki.fi 48 

 49 

 50 

mailto:joan.porcar@helsinki.fi


3 
 

For decades, the dynamic nature of chlorophyll-a fluorescence (ChlaF) has provided insight 51 

into the biophysics and ecophysiology of the light reactions of photosynthesis from the 52 

subcellular to leaf scales. Recent advances in remote sensing methods now enable detection of 53 

ChlaF induced by sunlight across a range of larger scales, using instruments mounted on 54 

towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-55 

induced fluorescence (SIF) and its application promises to overcome spatial constraints on 56 

studies of photosynthesis, opening new research directions and opportunities in ecology, 57 

ecophysiology, biogeochemistry, agriculture and forestry. However, to unleash the full 58 

potential of SIF, intensive cross-disciplinary work is required to harmonize these new 59 

advances with the rich history of biophysical and ecophysiological studies of ChlaF, fostering 60 

the development of next-generation plant physiological and Earth system models. Here, we 61 

introduce the scale-dependent link between SIF and photosynthesis, with an emphasis on 62 

seven remaining scientific challenges, and present a roadmap to facilitate future collaborative 63 

research towards new SIF applications.  64 

When illuminated, chlorophyll-a molecules weakly emit light in the 650-850 nm range; that is, they 65 

fluoresce. Steady state1,2 and time-resolved fluorescence spectroscopy3,4, as well as pulse-amplitude 66 

modulated (PAM) fluorescence5,6 have long been used by biophysicists, molecular biologists and 67 

ecophysiologists to elucidate the structure and function of the photosynthetic apparatus7-9. These 68 

techniques are regarded as active because the measured ChlaF originates from a controlled light 69 

source, and  accordingly have largely10,11 been restricted to measurements at the subcellular and leaf 70 

levels. 71 

Interest in passive remote sensing methods capable of retrieving solar-induced ChlaF across a 72 

continuum of spatial scales emerged more than two decades ago12. These seminal activities led to 73 

the first demonstrations of tower-based13,14 and satellite15 SIF measurements over terrestrial 74 

ecosystems. The opportunity to remotely detect an energy flux (Box 1) that arises directly from 75 
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within the photosynthetic process spurred the rapid development of measurement techniques, 76 

retrieval protocols, and models for estimating and interpreting SIF across scales. As reviewed in 77 

Mohammed et al.12 and Aasen et al.16, SIF can now be measured from an expanding number of 78 

sensors mounted on towers17,18, drones19,20, aircraft21,22 and satellites with ever-improving spatial 79 

and temporal resolution23,24. So far, all satellite SIF retrievals have been serendipitous, relying on 80 

instruments originally designed to measure atmospheric gases. The first satellite mission designed 81 

specifically for the measurement of SIF is the ESA FLuorescence EXplorer (FLEX) mission, which 82 

is set to launch in 202425. 83 

SIF methods are rapidly breaking through the scale bottleneck of traditional ChlaF measurements, 84 

opening up a range of new opportunities to study photosynthesis across the continuum of spatial 85 

scales from the leaf, through plant canopies, and up to the globe. With SIF we now have the 86 

potential to illuminate the path connecting plant molecular biology to Earth-system science. 87 

However, before the full potential of multiscale SIF observations can be realized, a number of 88 

challenges must be overcome. Extracting the information embedded in the SIF signal requires a 89 

fundamental understanding and a quantitative description of the processes that connect measured 90 

ChlaF with photosynthesis (Fig.1), as well as their variation across space and time (Fig. 2). In this 91 

Perspective, we present these challenges and propose a roadmap of activities to facilitate future 92 

research. Finally, we discuss key emerging SIF applications that can benefit from cross-disciplinary 93 

expertise.   94 

Challenge 1: APARg. The common denominator between ChlaF and the photosynthetic uptake of 95 

CO2 is the flux of photosynthetically active radiation absorbed by photosynthetic pigments, or 96 

APARg (where the g stands for green), which provides the foundation for the mechanistic 97 

connection between SIF and photosynthesis. APARg is the product of the incoming 98 

photosynthetically active radiation (PAR) and the fraction of this PAR absorbed by photosynthetic 99 

pigments (fAPARg) (Fig.1). Importantly, although the absorption of radiation by leaves and plant 100 
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canopies can be quantified using radiometric sensors either coupled to an integrating sphere26 (e.g. 101 

leaf absorptance profile in Fig.1) or mounted above and below a plant canopy27, these 102 

measurements also include a significant and dynamic contribution from non-photosynthetic 103 

pigments and other canopy elements. While inaccuracies in the estimation of APARg do not disrupt 104 

the relationship between SIF and photosynthesis, accurate quantification of the energy flux entering 105 

the photosynthetic process is essential for a mechanistic interpretation of SIF and remains a 106 

challenge.  107 

Challenge 2: Distribution of excitation energy between PSII and PSI and their ChlaF emissions. 108 

APARg is absorbed mostly by chlorophyll-a and chlorophyll-b associated with either photosystem 109 

II (PSII) or photosystem I (PSI) reaction centres. Interestingly, while both types of chlorophyll have 110 

the capacity to fluoresce, essentially all chlorophyll fluorescence in vivo originates from 111 

chlorophyll-a due to the efficient transfer of excitation energy from chlorophyll-b to chlorophyll-a 112 

within light harvesting antennae28. Likewise, although both photosystems emit ChlaF, ChlaF from 113 

PSII typically dominates the signal, especially in the red region of the emission spectrum2 (Fig.1), 114 

and exhibits greater variation in quantum yield in response to photochemical and non-115 

photochemical processes7,29. The dynamic nature of PSII ChlaF explains the widespread application 116 

of PAM fluorescence to probe the energy partitioning between photochemical and non-117 

photochemical processes or to estimate the rate of linear electron transport (LET) in PSII30. 118 

However, the estimation of LET requires knowledge of the distribution of absorption between the 119 

photosystems (i.e. the use of an energy partitioning factor), which is rarely measured and often 120 

assumed to be 0.56. Although biochemical and biophysical methods to assess the stoichiometry and 121 

antenna sizes of PSI and PSII do exist31-33, these methods only provide a relative assessment of the 122 

energy distribution; absolute quantification requires the combination of simultaneous ChlaF and 123 

820 nm absorption measurements to probe the energy partitioning in PSII and PSI, respectively, 124 

along with photosynthetic gas exchange measurements34. Overall, the evidence gathered to date 125 
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suggests that neither the distribution of excitation energy between PSII and PSI nor the contribution 126 

of ChlaF from PSI to SIF remain constant over time, between species or within canopy light 127 

gradients35,36. Questions remain: how large is this variability? What controls it? And what is its 128 

significance for the interpretation of SIF? Answers to these questions await the development of 129 

versatile field methods and protocols (e.g. based on rapid optical measurements37) to enable 130 

the characterization of these factors across a wide range of conditions. 131 

Challenge 3: Energy partitioning in PSII. Energy absorbed in PSII is partitioned between three 132 

main processes: a) photochemical quenching (PQ) of excitation energy, promoting  linear electron 133 

transport, b) non-photochemical quenching (NPQ), which includes both regulated and sustained 134 

forms of thermal dissipation, and c) emission of ChlaF. The quantum yield of a process, e.g. ChlaF 135 

emission (ΦF), can be expressed as the ratio of the rate constant associated to that process relative 136 

to the sum of all rate constants. Importantly, the rate constants associated to PQ and NPQ are highly 137 

dynamic, which allows plants to regulate the flow of energy through PSII and to protect against 138 

light-induced damage38, 39. During the growing season, the rate constants of PQ and NPQ vary over 139 

time-scales of seconds to minutes in response to the redox dynamics of the quinone acceptor pool 140 

and induction and relaxation of regulated thermal dissipation, respectively. Outside of the growing 141 

season, or during periods of profound environmental stress, rate constants can be affected by 142 

photoinhibition of PQ and the induction of sustained NPQ. Accordingly, changes in the quantum 143 

yield of ChlaF (ΦF) reflect the combined effect of PQ and NPQ dynamics and a quantitative 144 

connection between ΦF and ΦP (the quantum yield of photochemistry) cannot be established 145 

without knowledge of either PQ or NPQ8,40. PAM fluorescence uses saturating light pulses to solve 146 

the energy partitioning and estimate ΦP; an approach that is not feasible during SIF measurements, 147 

precluding partitioning from SIF alone.  148 

Under certain conditions, either NPQ or PQ can dominate the relationships between ΦF and ΦP, 149 

resulting in the emergence of a positive or negative relationship respectively.  For example, under 150 
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low light intensities – when regulatory NPQ remains inactive - the relationship between ΦP and ΦF 151 

is negative under the action of PQ, which exerts opposite effects on (i.e. decouples) ΦP and ΦF. 152 

Under high light - when PQ tends to saturate and NPQ is highly active  - the relationship between 153 

ΦP and ΦF turns to positive under the action of NPQ, which competes for excitation with both (i.e. 154 

couples) ΦP and ΦF12,52,53. The latter case can explain the seasonal correlation between ΦP and ΦF 155 

observed at the leaf41,42 (Fig. 2) and canopy scales18, in response to the modulation of sustained 156 

NPQ that protects the foliage from the harmful combination of excessive light and low 157 

temperatures43,44. Despite the positive relationship between ΦP and ΦF that emerges in response to 158 

certain stress conditions, the quantitative treatment of the energy partitioning in PSII requires the 159 

use of mechanistic models and remains one of the core challenges to the interpretation of SIF40,45,46.  160 

Challenge 4: Alternative energy sinks. Photosynthetic linear electron transport provides reducing 161 

power for a range of metabolic processes beyond CO2 assimilation via the Calvin cycle, including 162 

chlororespiration47, photorespiration48, nitrogen, sulphur and oxygen reduction (the latter known as 163 

the Mehler reaction in the water-water cycle49), and the synthesis of volatile organic compounds50. 164 

Importantly, the dynamics of these ‘non-assimilatory’ electron sinks can affect ChlF in a manner 165 

not directly correlated with CO2 assimilation. In particular, because alternative energy sinks can 166 

have a protective function by sustaining LET under conditions when CO2 assimilation is impaired51, 167 

they could influence the capacity of SIF to detect certain plant stress responses. Therefore, it is 168 

critical to address the extent that these dynamics decouple SIF from GPP, in particular during plant 169 

stress. As with Challenge 2, answering this question will benefit from the development of versatile 170 

field methods and protocols to promote the widespread characterization of these factors across a 171 

wide range of conditions.  172 

Challenge 5: Leaf and canopy ChlaF scattering, reabsorption and measurement geometry. 173 

Although the lighter and darker green stripes seen on an athletic field may give the impression of 174 

different chlorophyll contents, they are an optical reflection effect created when the grass is bent in 175 
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a particular direction during mowing. SIF measurements over plant canopies are similarly affected 176 

by the distribution of leaves, canopy architecture and measurement geometry27,52. The amount and 177 

distribution of chlorophyll within a leaf (influenced by photosystem and thylakoid structure, 178 

chloroplast distribution, and internal leaf morphology), as well as the amount and geometrical 179 

arrangement of leaves and other non-photosynthetic material within a plant canopy (influenced by 180 

branch/stem architecture) drive APARg, connecting SIF and photosynthesis at the leaf and canopy 181 

scales, respectively. Once emitted, ChlaF photons travel through the same leaf and canopy 182 

structures, where some of the ChlaF photons are reabsorbed (Fig. 1 and Fig. 2 “spectral dynamics”). 183 

As a result, spatial and temporal variations in leaf biochemistry, leaf morphology, and canopy 184 

architecture, as well as foliage illumination and viewing geometry, influence the probability of 185 

ChlaF photons contributing to a SIF measurement (known as the escape probability). These factors 186 

decouple the total emitted ChlaF from the measured SIF, and by extension from photosynthesis. 187 

Physically-based radiative transfer models, which simulate the movement of photons through leaves 188 

and plant canopies (Box 2), can be used to provide a quantitative framework to investigate and 189 

account for the impact of these factors on APARg and SIF observations27,53. Although spatially 190 

explicit RTM approaches are already available (see Supplementary Video 1 and 2), advances in the 191 

parametrization of within-leaf and canopy drivers of SIF - e.g. canopy gradients in foliar 192 

morphology, pigment contents (Challenge 1) or ChlaF contribution from PSI (Challenge 2) - remain 193 

areas of active development. 194 

Challenge 6: Atmospheric absorption and scattering. Atmospheric gases, aerosols and other 195 

particles absorb and scatter ChlaF photons traveling from a plant canopy to a remote detector. The 196 

extent of atmospheric absorption and scattering of SIF depends on the retrieval wavelength, the 197 

distance between target and sensor, and the properties of the atmosphere (Box 1). In particular, SIF 198 

retrieval methods based on the in-filling of atmospheric gas absorption bands, such as the O2-A or 199 

O2-B bands (Fig. 1), face the challenge that the gas absorption feature used for the SIF retrieval 200 
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simultaneously attenuates the ChlaF signal as it travels towards the detector. This effect requires a 201 

correction even for short-distance measurements from canopy towers and drones54. Although an 202 

atmospheric RTM can be used to characterize and correct for these effects, its application requires 203 

site-specific measurements of atmospheric profile parameters for model input, which remains an 204 

operational challenge55.  205 

Challenge 7: Integrating SIF controls across space and time. A final challenge, and perhaps the 206 

most relevant, is the contextualization of the interpretation of SIF (including the previous six 207 

challenges) within the spatial and temporal domain of the measurements (Fig. 2). Temporally, 208 

ChlaF dynamics have been used to investigate the energy transfer within photosystems (femto-209 

picosecond scale)7,56, the redox status of the donor and acceptor sides of the photosystem 210 

(microsecond-millisecond scale)3,4, and the variations in PQ and NPQ (seconds-to-seasonal scale)38, 211 

39,44. Spatially, the intensity and spectral properties of SIF are also controlled by factors that regulate 212 

both APARg and ChlaF scattering and reabsorption within a leaf or plant canopy57,58 (Fig. 2, 213 

“spectral dynamics”). When ChlaF is measured as SIF across coarser spatial and longer temporal 214 

scales, the signal carries information that aggregates an expanding assortment of physical and 215 

biological factors59-61. New controls may appear while the effects of others may be subordinated, 216 

strengthening (via ‘couplers’; Fig. 2) or disrupting (via ‘decouplers’; Fig. 2) the relationship 217 

between SIF and GPP.  218 

For example, tower-based SIF studies reveal a strong seasonal linear relationship between canopy 219 

SIF and ecosystem GPP across a wide range of ecosystems17,18,61, consistent with the coupling 220 

action of APARg and NPQ described above. Yet, the sensitivity, strength and linearity of the 221 

seasonal SIF-GPP relationship is not universal and has been found to depend on additional physical 222 

and physiological decoupling factors, such as sun-vegetation-sensor geometries62,63, vegetation 223 

canopy structure52,64, or photosynthetic pathway (C3 vs. C4)27,65, with contrasting responses to 224 

different environmental stressors66,67. Clearly, integrating and disentangling the relationship 225 
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between SIF and GPP across species, space, time and in response to environmental stress, remains 226 

still a challenge that calls for comprehensive field studies.  227 

Roadmap towards a consistent interpretation of SIF 228 

The time for multiscale SIF measurements is already here (Fig. 3). Yet, converting these data into 229 

meaningful information and new applications still requires effort dedicated to scaling and 230 

standardizing methods for SIF interpretation, with particular attention to the seven challenges 231 

described above. This process requires accounting for the influence of 1) instrumental, 2) 232 

atmospheric, 3) structural and 4) physiological factors to unlock the quantitative association 233 

between measured SIF and photosynthesis (Fig. 4). Addressing these challenges requires new data, 234 

protocols and models to interpret SIF and bridge the gap between molecular processes, i.e. 235 

photosynthesis, and satellite imagery. 236 

At the leaf level, new instruments and techniques employing optical bandpass filters have been 237 

developed to record fluorescence spectral dynamics under both natural or controlled illumination, 238 

temperature, and CO2 concentration16,68-71. Such spectral approaches, combined with foliar pigment 239 

analysis, photosynthetic gas exchange, and PAM ChlaF measurements, provide new insights into 240 

the connection between SIF and photosynthesis dynamics of leaves42,69,72. Going forward, 241 

mechanistically modeling the link between SIF and GPP (Challenges 1-4) will require the 242 

combination of field campaigns covering full growing seasons, multiple species and stress 243 

responses with detailed experimentation under highly controlled conditions, for example using 244 

Arabidopsis mutants with altered photochemical properties9,73. In particular, the development of 245 

versatile field instrumentation and protocols for the estimation of APARg (Challenge 1), energy 246 

distribution between PSII and PSI - including the ChlaF contribution from PSI - (Challenge 2), or 247 

the quantification of alternative energy sinks (Challenge 4), is key to resolving the spatial and 248 

temporal influences of these factors on SIF.  249 
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The synergistic use of complementary data streams can also help to constrain the modelling of 250 

photosynthesis and support SIF interpretation. For example, leaf and canopy reflectance data can 251 

inform us on the chlorophyll content in the leaf or the amount of leaves in the canopy74, relating to 252 

APARg (Challenge 1). In addition, reflectance data have been used to explore the regulatory 253 

dynamics of NPQ75, which could contribute to resolving energy partitioning in PSII (Challenge 3). 254 

This approach is feasible due to the spectral change that accompanies the operation of the 255 

xanthophyll cycle76 - by which violaxanthin is converted to antheraxanthin and zeaxanthin in a 256 

process that modulates NPQ38,77 - as well as the seasonal dynamics of leaf carotenoid and 257 

chlorophyll contents78. These spectral changes, which have been captured by the photochemical 258 

reflectance index (PRI)77,79 or the Chlorophyll/Carotenoid Index (CCI)80, are now being revisited 259 

and investigated in depth across the whole VIS-NIR region alongside with SIF dynamics71,76. 260 

Clearly, as in the case of SIF, careful use of canopy and atmospheric RTMs will be needed to 261 

disentangle these subtle physiologically-induced reflectance changes from those of a dynamic 262 

background55. In addition to synergies with spectral reflectance, use of thermal imaging81, radar82, 263 

or multispectral laser scanning methods83 offer interesting possibilities to constrain the carbon 264 

reactions of photosynthesis by providing independent information on plant water status (Challenge 265 

4). Likewise, leaf and ecosystem-level measurements of carbonyl sulfide (COS) uptake by 266 

vegetation can provide an independent source of information on stomatal conductance in vascular 267 

plants84, which could be highly relevant for the development and validation of ecosystem-level SIF-268 

GPP models.  269 

Process-based and radiative transfer models are required to integrate physical and physiological 270 

mechanisms operating at different scales (Challenge 7), providing excellent frameworks for 271 

multidisciplinary collaborations to connect molecular-level with Earth-system processes. Clearly, as 272 

our mechanistic understanding of the connection between SIF and GPP increases (Challenges 1-4), 273 

so will the accuracy of process-based models. For example, the integration of the Farquhar-274 
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Caemmerer-Berry85 biochemical model of photosynthesis into dynamic land-surface models (e.g., 275 

ORCHIDEE86 or BETHY87) provides a gateway for assimilating satellite SIF data and improving 276 

the accuracy of GPP estimations88,89. In addition, SIF resides at the core of a new generation of 277 

photosynthesis models that emphasize the light reactions45,90. In the case of RTMs with established 278 

SIF capabilities (Box 2), further improvements can be achieved by coupling with new techniques 279 

measuring detailed 3D structures. Leaf RTMs would benefit from including variations in leaf 280 

morphology, thylakoid structure, or the spectral signatures of PSI and PSII. The 3D 281 

parameterization of canopy RTMs via lidar-based reconstruction methods91,92, coupled to non-282 

imaging17,19 and imaging proximal/airborne SIF measurements (Fig. 3)93,94, offers excellent 283 

opportunities to integrate and resolve the diversity of factors that control SIF across space and time 284 

(Challenge 7). Drone-based measurements could serve to investigate and model the impact of 285 

atmospheric properties on SIF retrieval approaches, by hovering at different distances above the 286 

target54 (Challenge 6). Finally, less accurate but simpler alternative methods for separating the 287 

physiological and structural influences on the SIF signal have been recently proposed based on the 288 

theory of vegetation canopy near-infrared spectral invariants95,96. Whether this or other correction 289 

methods are applicable to canopy SIF acquisitions across scales, especially observations at very 290 

high spatial resolutions (Fig. 3) should be further investigated.  291 

Equally critical for the consistent interpretation of SIF is the establishment of a global network and 292 

database of leaf and ecosystem-level SIF measurements covering different biomes, and supporting 293 

model development as well as airborne and satellite calibration/validation activities. While regional 294 

SIF networks are starting to emerge in North America, Europe, and Asia, their global connectivity 295 

should be a priority to promote the adoption of standards for instrument calibrations and long-term 296 

monitoring operations (Fig. 4).  297 

Our roadmap for resolving the seven SIF challenges will only succeed through multidisciplinary 298 

collaboration involving specialists from across molecular biology, plant physiology, optical physics 299 
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and remote sensing. Together, the characterization and modeling of the interplay between structural, 300 

optical and functional dynamics of leaves and plant canopies, can turn our crops and forests into 301 

observable field laboratories. 302 

Emerging and potential SIF applications 303 

Satellite SIF data are already providing new insight into photosynthetic dynamics at the global 304 

scale97,98. Likewise, with the advent of multiscale SIF measurements (Fig. 3), and as the remaining 305 

challenges are overcome (Fig. 4), a new range of SIF applications unfolds across fields of 306 

biochemistry, biophysics, ecology, ecophysiology, biogeochemistry, agriculture and forestry (Fig. 307 

5). Equally important, the continuum of scales at which SIF can be measured provides a focal point 308 

to promote and strengthen the interaction between research communities, from plant molecular 309 

biology to Earth-system science. Here, we outline four examples of potential and emerging SIF 310 

applications.  311 

Spatial and 3D photosynthesis. Photosynthetic CO2 assimilation can be measured using infrared 312 

gas analyzers, either coupled to chambers or enclosures at the leaf, shoot, and whole-plant level99, 313 

or with a sonic anemometer at the ecosystem level using the eddy covariance approach100. These 314 

methods, however, lack detailed spatial information. Spatial measurements of photosynthesis, in 315 

terms of photochemical rates of the light reactions, require the use of imaging systems that, to date, 316 

have remained restricted to the scale of leaves or small-sized plants, e.g. PAM imaging methods101. 317 

SIF measurements have potential to fill this scale gap. For example, SIF imaging (Fig. 3) could be 318 

benchmarked with eddy-covariance methods to reveal the spatial variability of photosynthesis 319 

within the footprint of ecosystem eddy covariance measurements, allowing us to investigate the 320 

influence of microenvironment, understory and vertical canopy structure, or the interplay between 321 

biological and functional diversity within the ecosystem. Likewise, SIF imaging could be applied to 322 
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resolve photosynthesis dynamics in 3D, helping to advance our understanding of the interaction 323 

between plant structure and function102,103. 324 

Physiological phenotyping and pre-visual stress detection. Spatial and temporal variations in plant 325 

morphological traits (e.g., canopy height, leaf area, and plant growth) have been widely used as 326 

markers for field phenotypic variability and to investigate long-term plant stress responses. 327 

However, these traits are insufficiently responsive to rapid plant physiological changes. This makes 328 

them ill-suited for physiological phenotyping (i.e. breeding plant phenotypes displaying specific 329 

physiological responses to the environment), or pre-visual stress detection and subsequent 330 

optimization of water, pesticide and fertilizer use. The current phenotyping focus has, therefore, 331 

shifted towards measurements in the visible and infrared spectral ranges, where reflectance changes 332 

can be associated with specific physiological and biochemical traits104 or used for early-stress 333 

detection105. In this context, emerging SIF imaging systems have already provided promising results 334 

for applications in precision agriculture and detection of pest infestations93,106. In the near future, 335 

these methods could also support precision forestry applications related to seedling production or 336 

tree-scale forest management. 337 

Functional plant diversity and spatial ecology. Functional diversity is a fundamental component of 338 

the biodiversity concept107. As a global network for monitoring biodiversity through remotely 339 

sensed plant functional traits is being developed108, SIF could become one of the new essential 340 

variables for mapping functional diversity across ecosystem and landscape scales, given the wide 341 

range of biochemical and physiological factors that SIF is sensitive to (Fig. 2) in relation to plant 342 

productivity. For example, SIF has been shown to convey spatial information on leaf mass and 343 

chlorophyll content109, and other functional plant traits110 in various forest ecosystems. Additionally 344 

and importantly, the combination of high-resolution structural, spectral and SIF data is potentially 345 

the only viable option to investigate ecosystem functions that have remained hidden from our 346 

observational abilities, such as photosynthetic phenology in evergreen forests18, cryptogamic 347 
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biocrusts111 and spatially fragmented Antarctic mosses74. Together with spatial photosynthesis, SIF 348 

could also offer unique opportunities for studies in spatial ecology111,112, where plant environmental 349 

responses and biotic interactions could leave their imprint on SIF. 350 

Carbon and water cycle studies. The carbon and water cycles of terrestrial ecosystems are 351 

intricately connected via stomatal regulation and total leaf area. Because both canopy 352 

evapotranspiration and canopy SIF dynamics are strongly controlled by leaf area, and since ChlaF 353 

can also decrease with stomatal closure - via increased NPQ in response to water stress113, 114; tower 354 

and satellite SIF have been preliminarily used to investigate canopy conductance and plant 355 

transpiration115,116. No doubt, better constraints on transpiration and photosynthetic dynamics in 356 

land-surface models will be achieved as the mechanistic basis of SIF is elucidated across scales 357 

(Challenges 1-7), and the integration of SIF with other remote sensing datasets increases, such as 358 

land-surface temperature115, surface soil moisture89, radar-measured vegetation optical depth 359 

characterizing canopy structure and water content117, or column-averaged atmospheric CO2 
92. New 360 

knowledge of photosynthesis at the ecosystem and regional scales will bring further insight into the 361 

large-scale interactions between environmental drivers and plant productivity, and feedbacks 362 

between the biosphere and atmosphere. 363 

Concluding remarks 364 

The SIF signal gathers a wealth of physiological, biochemical, and structural information as it 365 

travels from the photosystems to the top of canopy and beyond (Fig. 2). This can leave the 366 

impression that SIF is, to use the classic analogy, the ‘Swiss Army Knife’ of photosynthesis 367 

measurements. Critically, the variation in SIF caused by physical and biotic factors is entangled in 368 

the spatiotemporal domain, and our capacity to disentangle it into useful informative components 369 

requires further attention. Historically, photosynthesis research has been a multidisciplinary 370 

endeavor, with breakthroughs in the 20th century emerging from collaboration between chemists, 371 
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biologists and physicists. We are now entering a new era of multiscale observations of 372 

photosynthesis which requires the interdisciplinary research environment to flourish further, this 373 

time to resolve the mechanistic connection between SIF and GPP and to scale it across space and 374 

time. The technology to measure SIF is developing at a faster pace than our capacity to interpret the 375 

acquired data. With the challenges, roadmap and unfolding opportunities introduced here we hope 376 

to encourage more scientists to join the multidisciplinary quest to reveal the true potential of SIF 377 

observation. 378 

 379 
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Figure Legends 730 

Figure 1. From incoming radiation to observed SIF and photosynthesis: mechanistic 731 

challenges. Solar radiation reaching the top of the atmosphere (TOA) is partly absorbed and 732 

scattered by atmospheric gases and particles, decreasing its intensity as it reaches the bottom of the 733 

atmosphere (BOA), generating specific absorption features. Part of the radiation is absorbed by 734 

photosynthetic pigments in vegetation and leaves (fAPARg) (Challenge 1), associated with either 735 

photosystem I (PSI) or photosystem II (PSII), which contribute with differential dynamics and 736 

spectral properties to overall SIF emission (Challenge 2). Within each photosystem, energy is 737 

further partitioned into three dynamic processes (Challenge 3): i) photochemistry (leading mainly 738 

to linear (LET) or cyclic (CET) electron transport, the latter involving PSI only), ii) thermal energy 739 

dissipation, and iii) ChlaF. Photosynthetic energy (expressed for simplicity in terms of NADPH 740 

equivalents) is further partitioned between alternative energy sinks and gross photosynthesis (AG), 741 

and again between gross primary productivity (GPP) and photorespiration (PR),  with dynamics that 742 

are not necessarily seen by SIF (Challenge 4). Notably, because it is only possible to measure the 743 

net flux of CO2 from a leaf or ecosystem, i.e. net photosynthesis or net primary productivity (NPP), 744 

the rate of daytime respiration (RD) must be known or estimated. In turn, because emitted ChlaF 745 

overlaps with the absorption spectra of leaves and plant canopies, some SIF photons - especially 746 

those in the red wavelengths - are re-absorbed within the canopy (Challenge 5). Emitted ChlaF is 747 

further scattered and absorbed by aerosols and gases in the atmosphere (Challenge 6). 748 

 749 

Figure 2. The connection between SIF and GPP across space and time.  The relationship 750 

between SIF and GPP is affected by multiple factors as we move across spatial and temporal scales. 751 

Some factors exert a similar effect on SIF and GPP, keeping them positively correlated - we call 752 

these couplers. Other factors differentially affect SIF and GPP - we call these decouplers. Factors 753 
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driving the dynamics of NPQ and APAR will tend to keep SIF and GPP coupled both across space 754 

and time, whereas factors adding variation to the energy partitioning between ChlF and GPP, or 755 

influencing the reabsorption of ChlF, will tend to decouple SIF from GPP (see examples in the 756 

figure). Note how the shape of the ChlF spectrum (“Spectral dynamics”) changes across scales in 757 

response to reabsorption within the chloroplast, leaf and canopy, measurable as SIF only within 758 

discrete wavelengths at the canopy and ecosystem levels (Box 1). Equally important to our 759 

understanding of the spatial context of the factors that couple/decouple SIF to GPP is understanding 760 

their temporal range of action (lower panels). For example, the rapid (second/minute) decrease in 761 

ChlaF upon saturating illumination of dark acclimated leaves reflects the dynamics of NPQ76. 762 

Similar dynamics can be seen under natural conditions at the diurnal/seasonal scale in Scots pine 763 

needles, as the quantum yield of fluorescence (ΦF) responds to PQ and NPQ (redrawn from Porcar-764 

Castell39). Here, SIF was estimated for illustrative purposes as SIF (r.u.) = PAR x 0.8 x 0.5 x ΦF, 765 

where 0.8 and 0.5 are estimates for fAPARg and the fraction of radiation absorbed by PSII. 766 

Likewise, interannual dynamics at the regional-to-local scales24 can reflect changes in canopy 767 

structure, physiological stress responses or other functional traits. Ultimately, the challenge of 768 

integrating and disentangling the impact of these couplers/decouplers across space, time, species 769 

and plant stress responses remains (Challenge 7). 770 

 771 

Figure 3. State-of-the-art SIF imaging methods allow for the observation of SIF across a continuum 772 

of scales: from the leaf-to-individual (top row) to the individual-to-landscape (bottom row). Panel A 773 

shows an RGB image of a senescing maple tree next to an oak tree with green leaves. Panel B 774 

shows the SIF image of the same trees retrieved in the O2A band at 760 nm (SIF760) using a 775 

commercial, off-the-shelf imaging spectrometer118 mounted on a tripod some meters away and after 776 

applying a filter to exclude non-vegetation pixels (pixels with an normalized difference vegetation 777 

index (NDVI) < 0.65). As expected, the green and photosynthetically active oak emitted SIF at 778 
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higher magnitude (Panel C) than the senescing maple. Similarly, panels D-E present an airborne 779 

RGB and SIF760 map obtained with data from the HyPlant sensor collected at an altitude of 680 m 780 

above ground94. The scene shows several plots within an experimental apple tree plantation at the 781 

agricultural research site Campus Klein-Altendorf (University of Bonn, Germany), where apple tree 782 

varieties of different ages were growing in a typical row structure. Single tree crowns were 783 

segmented by overlaying the SIF images with a 3D surface map and all pixels that were related to a 784 

background signal (defined as ground level + 30 cm) were excluded. The image visualizes the 785 

signal of individual trees, where each pixel corresponds to an area of 1x1 meters and thus the small 786 

clusters represent the signal of an individual tree. 787 

 788 

Figure 4. A roadmap towards the standardized interpretation of SIF. The critical steps, data sources 789 

and methods that will be required to overcome the seven challenges are introduced to allow for a 790 

consistent interpretation of spectral observations in terms of leaf, canopy and ecosystem traits. 791 

 792 

Figure 5. Potential and emerging SIF applications illustrated in the form of a “SIF-city” metro plan, 793 

where different colors denote five fields of plant science. Identified research applications (metro 794 

stops) are causally connected in individual communication lines, but the final trajectories and 795 

number of stops will depend on how the field of SIF research evolves over the next years. The red-796 

colored stops denote the application topics elaborated in Section 3. 797 
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