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Assessing the utility of geospatial technologies to investigate
environmental change within lake systems
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H I G H L I G H T S

• Lakes and their catchments provide im-
portant ecosystem services

• Multi-scale observations required to
understand the response of lakes to cli-
mate and anthropogenic pressures

• Remote sensing is an important
geospatial technology for deriving in-
formation about lakes systems

• We review the applicability of remote
sensing in linking lake-catchment pro-
cesses to assess lake response to envi-
ronmental change
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Over 50% of the world's population live within 3 km of rivers and lakes highlighting the on-going importance of
freshwater resources to human health and societal well-being.Whilst covering c. 3.5% of the Earth's non-glaciat-
ed land mass, trends in the environmental quality of the world's standing waters (natural lakes and reservoirs)
are poorly understood, at least in comparisonwith rivers, and so evaluation of their current condition and sensi-
tivity to change are global priorities. Here it is argued that a geospatial approach harnessing existing global
datasets, along with new generation remote sensing products, offers the basis to characterise trajectories of
change in lake properties e.g., water quality, physical structure, hydrological regime and ecological behaviour.
This approach furthermore provides the evidence base to understand the relative importance of climatic forcing
and/or changing catchment processes, e.g. land cover and soil moisture data, which coupled with climate data
provide the basis to model regional water balance and runoff estimates over time. Using examples derived pri-
marily from the Danube Basin but also other parts of the World, we demonstrate the power of the approach
and its utility to assess the sensitivity of lake systems to environmental change, and hence better manage
these key resources in the future.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The world's freshwater ecosystems and the biodiversity they sup-
port are vital components of the global biosphere, yet remain fragile
and vulnerable to anthropogenic disturbance and climate change
(Dokulil, 2013; Schindler and Donahue, 2006; Vörösmarty et al., 2000;
Williamson et al., 2009). Whilst recognition grows of their role in the
carbon cycle at regional and continental scales (e.g. Knoll et al., 2013;
McDonald et al., 2013; Renwick et al., 2008; Yang et al., 2008), under-
standing their global significance to biogeochemical cycling and ecosys-
tem services has been hampered by uncertainties about absolute
numbers and the distributions of different types, as well as limited in-
formation on their ecological, chemical and physical condition
(Downing et al., 2006; Verpoorter et al., 2012). Verpoorter et al.
(2014) enumerated a global inventory of 117 million lakes
(N0.002 km2), with a combined surface area of about 5 × 106 km2,
equating to 3.7% of the Earth's non-glaciated land mass. In Europe
alone there are over 1.5 × 106 lakes with surface areas greater than
0.01 km2 and at least 500,000 natural lakes larger than 0.1 km2

(Kristiansen and Hansen, 1994). These systems span a continuum of
size, depth, form, altitude, geology, climatic and hydrological regime.
Importantly, lakes also sit within a wider landscape, catchment and hy-
drological network that means one needs to look beyond the lake itself
to determine the drivers of lake water behaviour and any changes in
that. For example, the Danube Basin is some 801,463 km2 in size and ac-
cording to the Global Lakes and Wetlands Database (Lehner and Döll,
2004) includes 592 lakes N0.1 km2. The large numbers involved and
the relative remoteness of many lake districts, especially within large
transnational catchments such as the Danube, presents major chal-
lenges in terms of managing the standing water resource and empha-
sises the need to be able to generalise about behaviour based on
limited field observations.

The role that aquatic systems play in underpinning society's activi-
ties, health and well-being is increasingly being understood through
the concept of ecosystem services, which links nature to an economic
value to society (TEEB, 2010). Particularly since the launch of the United
Nations Millennium Ecosystem Assessment (MEA) in 2005, there has
been an increase in the awareness of the ecosystem services provided
by aquatic and terrestrial ecosystems amongst policy makers (de
Groot et al., 2010), matched by a significant increase in the number of
scientific publications on the topic (de Araujo Barbosa et al., 2015;
Large and Gilvear, 2014; Seppelt et al., 2011). Remote sensing has the
potential to provide an important source of information for quantifying
and mapping dynamic terrestrial and aquatic ecosystem services and
hydrological processes, including approaches to hydrologic modelling
as reviewed by Xu et al. (2014). In many cases, given the large catch-
ment area of many of the most important river and lake systems in
the world (particularly those with large populations dependent upon
them and their attendant ecosystem services), the synoptic, wide area
coverage and frequent observations provided by satellite-based remote
sensing are an important source of standardised information that is not
prey to variability in national and regional in situ data collection meth-
odologies and standards. As a result, remote sensing has become an im-
portant geospatial technology for deriving information about lakes and
their catchments, which alongside advances in in situ sensor systems to
capture spatial information in addition to measurements across time
(Crawford et al., 2014) and analysis with Geographic Information Sys-
tems (GIS), provides an important step forward in our ability to model
lake and catchment status and behaviour.

From both passive (e.g. multispectral and hyperspectral) and active
(LiDAR and RADAR) remote sensing systems it is possible to retrieve the
state of important lake and catchment variables that may vary across
space at particular points in time. Recently, either directly or in combi-
nationwith other data, remote sensing has been successfully usedwith-
in the Danube Basin to map variations in biomass (Kovàcs, 2007),
carbon stocks in riparian forests (Suchenwirth et al., 2014), habitat

change (Kollár et al., 2011), historical land cover change (Crăciunescu
et al., 2010), evapotranspiration (Rodell et al., 2011) and soil moisture
(dall'Amico et al., 2012), to name but a few examples. However, it is im-
portant to recognise that whilst some catchment properties may be re-
trieved directly from remotely sensed data (e.g. canopy height with
LiDAR or leaf area index from optical data) some catchment properties,
such as land use, may only be inferred from remotely sensed data
through contextual associations across, whilst others, such as rawmate-
rial production, will require remotely sensed data to be coupled with
other ancillary datasets, for example in situ measurements and
modelled data (de Araujo Barbosa et al., 2015).

Following decades of fundamental research and the launch of sever-
al new satellite programmes a report by London Economics to the UK
Space Agency suggests that we stand at the dawn of a ‘New Space
Age’ (London Economics, 2015, p. 104), one in which there will be sub-
stantial growth in applications of remote sensing data. Indeed the future
of European (and global) remote sensing for catchment, ecosystem and
lake-based studies looks very promising, particularly with respect to
data availability and the new generation Copernicus satellites of the Eu-
ropean Space Agency (ESA). The Copernicus satellites build on the suc-
cess and capabilities of other currently operational (e.g. Landsat series)
and non-operational (e.g. Envisat MERIS and AATSR) instruments and
include the Sentinel-2 Multispectral Imager (MSI) (launched June
2015), Sentinel-3 Ocean and Land Colour Instrument (OLCI) and Senti-
nel-3 Sea and Land Surface Temperature Radiometer (SLSTR), thefirst of
which is due for launch late 2015. Sentinel-2 MSI has 13 wavebands in
the visible and NIR at 10–60 m spatial resolution and a 5-day revisit
time. Sentinel-3 OLCI at a 300 m spatial resolution will employ 21
wavebands in the visible and NIR. Sentinel-3 SLSTR will employ 9
wavebands, with a nominal 500 m spatial resolution in the visible and
NIR and 1 km at the TIR. In addition, Sentinel-3 will have a revisit time
of 1–2 days. These optical and thermal sensors combine short revisit
times, fine spatial resolutions and multiple spectral channels with a
free data access policy. Herewe signpost some of the new opportunities
for catchment and lake studies provided by these new systems by col-
lating experiences of previous research and how these and the plethora
of new data sources will contribute to future lake and catchment
management.

Several authors have provided comprehensive reviews of the poten-
tial and current status of remote sensing to map and quantify a range of
ecosystem services (e.g. Andrew et al., 2014; de Araujo Barbosa et al.,
2015). This paper builds upon those comprehensive reviews and others
by exploring the utility of remote sensing to capture spatial and tempo-
ral patterns of change in key catchment processes and the use of these
data to inform policy and management decisions. Particular reference
is made to examples from the Danube Basin highlighting information
derived from remote sensing data relevant for catchmentwater balance
estimation and modelling, as well as land cover change and other criti-
cal ecosystem functions. By focussing on the catchment we evaluate
how to derive information on drivers of change in lake behaviour rather
than explicitly exploring the use of remote sensing to detect change in
the lake water quality itself, which is the subject a separate paper in
this Special Issue (Tyler et al., in this volume).

2. Lakes, landscape limnology and remote sensing

Soranno et al. (2010) introduced landscape limnology as a new con-
ceptual framework for understanding lake behaviour based on a series
of important comparative and regional limnological studies (e.g. Riera
et al., 2000; Webster et al., 2000; Soranno et al., 2009). Landscape lim-
nology is the spatially-explicit study of lakes within freshwater, terres-
trial and human landscapes to determine the effects of pattern on
ecosystem processes over multiple temporal and spatial scales (Fig. 1).
It highlights that landscape settings influence lake functions through
the hydromorphological settingmediated by the extent of humanmod-
ification, superimposed upon which is the effect of climate change.

2 E. Politi et al. / Science of the Total Environment xxx (2015) xxx–xxx

Please cite this article as: Politi, E., et al., Assessing the utility of geospatial technologies to investigate environmental changewithin lake systems,
Sci Total Environ (2015), http://dx.doi.org/10.1016/j.scitotenv.2015.09.136

http://dx.doi.org/10.1016/j.scitotenv.2015.09.136


An extension to this framework is shown in Table 1, which uses four
hierarchical structuring elements consistentwith thewater body classi-
fication attributes used in the EUWater Framework Directive (EUWFD,
2000). The first element is the ecoregionwhich sets out the broadest cli-
matic, physiographic and dominant biomes. Landscape setting estab-
lishes the specific characteristics in terms of hydro-climatic factors
such as continentality, the elevation of the lake and its catchment (e.g.
whether montane, piedmont or lowland) and biodiversity characteris-
tics. The lake-catchment relation captures the relative importance of
‘catchment’ versus ‘lake’ processes in relation to water, sediment and
nutrient budgets, including the critical role of autochthonous versus al-
lochthonous carbon fluxes (cf. Tranvik et al., 2009; Kutser et al., 2015).
Finally, lake morphometry (size, shape, orientation, water depth, etc.)
governs lake processes and characteristics such as mixing regime, resi-
dence time, shore zone energetics and riparian habitats (Hutchinson,
1957).

Untangling the effects of multiple pressures on lake structure and
function, and determining the environmental pressures that will have
the largest effect on a given lake or lake type, is a challenge that requires
multi-scale observations of a suite of functionally relevant and reliable
indicators of lake ecosystem condition for a larger number of lakes
than has been possible with traditional monitoring. Remote sensing
provides a plethora of datasets and products that, in combination with
ancillary data (e.g. in situ measurements and observations, modelled
data), can be used to improve our understanding of lake system re-
sponse to climate and non-climate pressures within a catchment. For
example, land cover/use (and consequently trends in the ripariandevel-
opment of a lakeshore), soilmoisture and elevation are, amongst others,
standard remote sensing products, whilst water balance modelling
techniques have recently assimilated remotely sensed information on
climatic variables (e.g. evapotranspiration, precipitation and land sur-
face temperature), soil moisture and vegetation properties. Taking the
catchment of Lake Balaton (the largest freshwater bodywithin the Dan-
ube Basin) as an example, we hereby present examples of global
datasets that are available from various sources at varying temporal

frequencies, time periods and spatial resolutions (Fig. 2, Table 2), and
which are often used as catchment indicators of lake change. The next
sections review the applicability of remote sensing in deriving some of
these products in the realm of limnological research at catchment-
wide scales across the globe, and specifically in the Danube Basin.

3. Catchment water balance

In recent decades the combined effects of economic growth and rap-
idly increasing global human population has led to increased demand
for freshwater, which in turn has resulted in the intensification of
water withdrawal from surface freshwater bodies and groundwater
pools. Human activities have caused global water scarcity, particularly
in arid and semi-arid regions, where overuse of natural water resources
has taken place (Wada et al., 2011). At the global scale agriculture is the
main water consumer with over 75% of abstractions, far outweighing
the amounts used for industrial (20%) or domestic purposes (5%)
(FAO, 2014; UNEP, 2008). However, significant regional variations also
exist reflecting local climate and physiographic features (Shiklomanov,
2000), imprinting an often complex picture of change when trying to
assess the strong impact that global climate change has on freshwater
supplies (WWAP, 2012). Determining the extent and severity of im-
pacts of human activities and climate change on water resources across
the globe, particularly in ungauged basins, has hitherto been a major
issue. This has often been addressed through water balance modelling
that can generate spatial and temporal variations of water availability
in lake catchments and river basins, and thus contribute towards the
management of water resources from local to global scales (Mitsova,
2014).

In principle, water balance models take into account the amount of
water input through precipitation and snowmelt, and the amount of
water output through evaporation, transpiration, surface (including
river) runoff, groundwater discharge and percolation. There exist nu-
merous water balance models, one of the earlier and more simplistic
being the Thornthwaite and Mather (TM) model (Thornthwaite and

Fig. 1. Landscape limnology framework connecting local and regional lake characteristics with examples of globally available datasets and EO products (after Soranno et al., 2009). JAXA
GSMaP_NRT (Japan Aerospace Exploration Agency Global SatelliteMapping of Precipitation in Near-Real-Time); ECMWF ERA-40 (European Centre forMedium-RangeWeather Forecasts
40-year re-analysis model data); GRACE (NASA/DLR's Gravity Recovery and Climate Experiment); HydroSHEDS (WorldWildlife Fund Hydrological data and maps based on SHuttle Ele-
vation Derivatives at multiple Scales); GLiM (Global Lithological Map database); UK NERC GloboLakes (United Kingdom Natural Environment Research Council GloboLakes project);
HWSD (Harmonised World Soil Database); gROADS (Global Roads Open Access Data Set); GRanD (Global Reservoir and Dam database); ESA CCI LC (European Space Agency Climate
Change Initiative Land Cover).
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Mather, 1955, 1957), a revision of an earlier model by Thornthwaite
(1948), which requires precipitation, air temperature and latitude to
produce estimates of evapotranspiration, soil moisture storage, snow
storage, surplus and runoff (McCabe andMarkstrom, 2007).Many stud-
ies have since developed new or modified existing water balance
models for use in different applications and at various spatio-temporal
scales and the reader is referred to Xu and Singh (1998, 2004) and
Boughton (2005) for comprehensive reviews of various water balance
modelling techniques.

A key requirement of large hydrological systems, such as theDanube
Basin, is that thesewater balance techniques andmodels must be appli-
cable to regional or even continental scales, which is potentially where
remote sensing can have a part to play. At a continental scale applicable
water balance models include FAO AQUASTAT (2001) that was devel-
oped to map agricultural water use in Africa, WaterGAP that simulates
global water availability and use in large drainage basins (Döll et al.,
2003; Alcamo et al., 2003) and GWAVA that models global water avail-
ability with demonstrable applications in Africa, South America and Eu-
rope (Meigh et al., 1999). In addition, the European Union Water and
Global Change (WATCH) project created a multi-model ensemble
bringing together nine large-scale hydrological models to compare
their ability to capturemean annual runoff and quantify the uncertainty
related to themodelling outputs. It was found that even though the per-
formance of each individual WATCH model differed, their ensemble
mean produced reliable estimates of runoff in European catchments
(Gudmundsson et al., 2012a, 2012b).

The application of water balance modelling specifically within the
Danube Basin in thepast has tended tomakeuse of historicweather sta-
tion measurements and simulation data as input parameters (e.g.
Mauser and Bach, 2009; Petrovič et al., 2010; Klein et al., 2011; Kling

et al., 2012) rather than making direct use of remote sensing observa-
tions. However, the GLOWA project (Global Change of the water cycle;
funded by the German Ministry of Research and Education (BMBF)) is
an example of one such initiative that exemplified the potential of re-
mote sensing to address the impact of global change on regional water
resources. Within this initiative is included the GLOWA-Danube project
(dedicated to theUpperDanubewatershed) that aims to investigate the
sustainability of future water use using modelling techniques (Ludwig
et al., 2003a). Within the GLOWA-Danube framework satellite-re-
trieved land cover information was used in a physically-based water
balance model to provide spatio-temporal estimates of evapotranspira-
tion, soil moisture, snow cover and runoff (Ludwig et al., 2003b). The
study combined multi-temporal coarse spatial resolution NOAA
AVHRR images and spectral unmixing techniques to produce sub-pixel
land cover information at the fine scales required for the detailed de-
scription of various hydrological processes, and showed that the ap-
proach produced improved model results compared to the use of
conventionally used land cover data (e.g. CORINE maps).

3.1. Role of remote sensing in water balance studies

Water balancemodels require a variety of data ranging from climatic
variables to information on soil and vegetation properties. Remote sens-
ing has the potential to produce some of this information at large
enough spatial and temporal scales to fulfil the need for continuous
water resource monitoring applications at scales varying from local to
global (Xu et al., 2014) and it is not uncommon for a combination of re-
mote sensing sensors to be used in hydrological modelling and water
balance applications (e.g. Awange et al., 2008; Milzow et al., 2011).
Even though remotely sensed observations complement in situ

Table 1
WFD compliant eco-geomorphic framework for contextualising lake behaviour.
Adapted from Rowan (2010).
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observations in providing data inputs for water balancemodelling tech-
niques, its potentialwas realisedmore than four decades ago. For exam-
ple, evapotranspiration estimations based on remotely sensed canopy
temperatures date back to the 1970s (e.g. Stone and Horton, 1974;

Blad and Rosenberg, 1976; Heilman et al., 1976; Jensen and Chery,
1980), as does the estimation of remotely sensed soil water content,
also known as soil moisture (Wang and Qu, 2009) and the mapping of
snow cover (e.g. Kyle et al., 1978). On the other hand, precipitation

Fig. 2. Examples of climate and non-climate datasets depicting lake pressure attributes in the catchment of Lake Balaton. SRTM90m (Shuttle Radar Topography Mission at 90 m spatial
resolution); gROADS (Global Roads Open Access Data Set); TEOW (Terrestrial Ecoregions of the World); GRanD (Global Reservoir and Dam database); HWSD (Harmonised World Soil
Database); GLiM (Global Lithological Map database); IMF (International Monetary Fund); FAO (Food and Agriculture Organisation); NOAA (National Oceanic and Atmospheric Adminis-
tration); AVHRR (Advanced VeryHigh Resolution Radiometer); NDVI (NormalisedDifference Vegetation Index); ECMWF ERA-40 (European Centre forMedium-RangeWeather Forecasts
40-year re-analysismodel data); ESA GlobCover (European Space Agency Global Land Cover product); CRU (Climatic Research Unit); SEDAC (Socioeconomic Data & Applications Center);
CIESIN (Center for International Earth Science Information Network).

Table 2
Examples of global data sources for deriving catchment attributes (period(s) of projected values are shown in square brackets).

Dataset/database Product parameter(s) Time period Format Units
Spatial
resolution

Harmonised World Soil Database (HWSD) Soil type 2008 Raster SMU 1 km
Global Lithological Map Database (GLiM) Geology 2012 Raster – 62.5 km
Global Reservoir and Dam Database v.1.1 (GRanD) Location and age of dams; spatial extent of

reservoirs
2011 Vector – –

Terrestrial Ecoregions of the World (TEOW) 16 ecoregions 2001 Polygons – –
HydroSHEDS (USGS) River network 2008 Vector – 1 km
Gridded Population of the World v.3 (GPWv3) Population density 1990, 1995, 2000, [2005],

[2010], [2015]
Raster Persons per

km2
5 km

Shuttle Radar Topography Mission v.4.1 (SRTM90m) DEM (elevation) 2008 Raster m 90 m
Climatic Research Unit Time Series v.3.21 (CRU TS 3.21) Precipitation 1901–2012; monthly NetCDF mm 62.5 km

Potential evapotranspiration mm
Temperature 10 × °C

European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-40

Runoff Sep 1957–Aug. 2002;
monthly

NetCDF m/day ~15 km

Global Roads Open Access Data Set (gROADSv1) Road network 1980–2010 Vector – –
European Space Agency (ESA) Climate Change Initiative
(CCI) Land Cover (LC)

Land cover 1998–2002, 2003–2007,
2008–2012

Raster – 300 m

Gridded Livestock of the World (FAO, Food and
Agriculture Organisation)

Cattle, poultry, buffalo, goat, pig, sheep 2000, 2005 Raster Animals per
km2

5 km

Fertilisers (FAO) Nitrogen & phosphate 2002–2010; annual csv Tonnes per
1000 ha

–

Irrigated land (actual & potential) (FAO) Agricultural area irrigated; Total area
equipped for irrigation

1961–2011; annual csv 1000 ha –

Gross Domestic Product (GDP) per capita, International
Monetary Fund (IMF)

GDP per capita 1980–[2018]; annual csv $ (USD) –
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can be estimated using remotely sensed data and various global prod-
ucts already exist, but their use in water balance modelling has only re-
cently been realised (e.g. Pereira-Cardenal et al., 2011). Finally, there are
no remote sensing products for air temperature, however Deus et al.
(2013) propose the use of remotely sensed land surface temperature
(LST) as a substitute for air temperature in water balance modelling,
and several methods incorporate LST to estimate evapotranspiration
(Verstraeten et al., 2008). Whilst Xu et al. (2014) and Karimi and
Bastiaanssen (2015) provide excellent reviews on the integration of re-
motely sensed observations to hydrologicmodelling in general, herewe
briefly review the status of remote sensing as a sources of functional in-
formation to understand the role of the catchment in changing lake
behaviours.

3.2. Remote sensing sensors, scales and products

3.2.1. Evapotranspiration (ET)
Remote sensing is a promising tool for the representation of the spa-

tial distribution of evapotranspiration (ET) across large spatial scales,
which is required for distributed water balance modelling (Glenn et
al., 2007). Several approaches have been proposed in the literature,
commonly using optical and thermal data, and less frequently satellite
microwave data. There are two types of methods that are used to esti-
mate ET from remote sensing data; empirical and physical models. Em-
pirical or statistical relationships make use of remotely sensed
vegetation indices, such as the normalised difference vegetation index
(NDVI) or the soil-adjusted vegetation index (SAVI) (Glenn et al.,
2007), which are based on the fraction of the ground area covered or
shaded by vegetation (Pereira et al., 2015). However, these methods
are insensitive to conditions of water or salinity stress, which is not
true for physical models (Pereira et al., 2015). Physical or analytical
models solve the surface energy balance (SEB) equation using land sur-
face temperature (LST) estimates based on remote sensing observa-
tions. The advantage of SEB models is that they can be used to
estimate ET in areas with diverse vegetation types and heterogeneous
vegetation cover (e.g. Minacapilli et al., 2009; Pôças et al., 2013). The
reader can refer to, for example, Glenn et al. (2007), Verstraeten et al.
(2008), Kalma et al. (2008), Pereira et al. (2015) and Karimi and
Bastiaanssen (2015) for detailed reviews of ET estimation methods
based on remote sensing data.

The utility of remote sensing inwater balancemodelling, and partic-
ularly in the estimation of ET, depends on the specifications of the sen-
sor and the cloud conditions (Kalma et al. 2008). Medium spatial
resolution sensors, such as the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) on-board the Terra satellite and the
Thematic Mapper (TM), Enhanced TM (ETM+) and Operational Land
Imager (OLI) on-board the Landsat series have a 16-day revisit capabil-
ity, which means temporal interpolation techniques are needed to pro-
vide the daily inputs often required for hydrological models. However,
ASTER has a spatial resolution of 15m in the visible and NIRwavebands
and 90 m in the TIR wavebands, while OLI offers a pixel size of 30 m in
the visible and NIR and 100 m in the TIR, which in many cases around
the globe and particularly within the Danube Basin, makes them suit-
able for mapping individual agricultural fields and smaller land parcels
(Pereira et al., 2015). On the other hand, the Terra/Aqua Moderate Res-
olution Imaging Spectrometer (MODIS) and NOAA Advanced Very High
Resolution Radiometer (AVHRR) provide daily observations depending
on cloud cover at a spatial resolution of 1 km. Both MODIS and NOAA
AVHRR can provide LST estimates with an accuracy of 1.0 °C at 1 km
or 5 km spatial resolution (Glenn et al., 2007) and less than 1.3 °C at
4.4 km (Pinheiro et al., 2006), respectively. Finally, geostationary satel-
lites at relatively coarse (1–5 km) spatial resolutions in the visible and
TIR have very frequent revisit times (15–30 min) and could be used to
derive LST, however their constant viewing angle introduces problems
at high latitudes which limits their global applicability (Diak et al.,
2004).

Overall, whilst the above illustrate the potential of remote sensing to
provide reliable information on ET, its practical application inwater bal-
ance modelling has often been hindered by concerns over accuracy. As
Karimi and Bastiaanssen (2015) note, the reliability of remotely-sensed
derived ET is often case and location specific, but the ensemblemean ET
products currently under development may be a significant step to-
wards addressing these concerns.

3.2.2. Soil moisture
The most common method for the retrieval of soil moisture is the

use of microwave remote sensing sensors, both active and passive,
and dates back to the 1970s (e.g. Eagleman and Ulaby, 1975;
Schmugge et al., 1974; Njoku and Kong, 1977; Mo et al., 1982). Remote-
ly sensed soil moisture can only be estimated in the uppermost layer of
the soil surface (i.e. top few centimetres), but assimilation of these ob-
servations within Soil-Vegetation-Atmosphere Transfer (SVAT) models
helps retrieve soil moisture in the root zone (Wigneron et al., 2003),
which is a key variable in hydrological modelling (e.g. Wilker et al.,
2006; Seneviratne et al., 2010).

There are many different surface soil moisture retrieval techniques
that have been proposed in the literature, some used to derive global
products, and these can be both empirical and physically-based (de
Jeu et al., 2008; Vereecken et al., 2008). While passive microwave sen-
sors (radiometers) detect microwave radiation that is naturally emitted
by the Earth's surface, active microwave sensors (RADAR) transmit an
electromagnetic pulse and measure the scattered microwave energy
back from the Earth surface. The success of microwave sensors in mea-
suring soilmoisture lies in the fact that changes in the soil dielectric con-
stant due to changes in water content are detectable, particularly at
low-frequency microwave regions (1–10 GHz) (e.g. Njoku and Kong,
1977;Wagner et al., 2007; de Jeu et al., 2008). Amajor advantage of mi-
crowave remote sensing is that can it be used day and night regardless
of cloud cover. A limitation is that dense vegetation cover and soil
roughness introduce noise to soil moisture measurements (e.g.
Wagner et al., 2007; de Jeu et al., 2008; Seneviratne et al., 2010), but
low-frequency microwave bands have been found to reduce this effect
(Schmugge et al., 2002; Njoku et al., 2003). In addition, a recent study
in the Upper Danube basin demonstrated that soil moisture retrieval er-
rors can be spatially diverse due to different factors (e.g. land surface
heterogeneity) that introduce noise in the remote sensing observations,
and that the retrieval accuracy strongly depends on the scale of observa-
tion (Loew, 2008).

Microwave instruments used in soil moisture retrieval include the
non-operational Nimbus 7 Scanning Multichannel Microwave Radiom-
eter (SMMR) (27–148 km spatial resolution), and Aqua Advanced Mi-
crowave Scanning Radiometer-EOS (AMSR-E) (38–56 km) for which
global soil moisture products exist (e.g. Njoku et al., 2003; Owe et al.,
2008). The F-series Special Sensor Microwave Imager (SSM/I) and Spe-
cial Sensor Microwave Imager Sounder (SSMIS) lack low-frequency
wavebands that are desired for soil moisture retrieval. Nevertheless,
soil moisture retrieval methods based on SSM/I data have been pro-
posed in the literature (e.g. Jackson et al., 2002; Wen et al., 2005). The
relatively high-frequency TRMM TMI and WindSat radiometer data
have also been used for the retrieval of soil moisture datasets (e.g.
Bindlish et al., 2003; Gao et al., 2006; Parinussa et al., 2012). ESA's Soil
Moisture and Oceanic Salinity (SMOS) (30–50 km spatial resolution)
was launched in 2009 and employs an L-band, which offers deeper veg-
etation penetration making it potentially more reliable over densely
vegetated regions (Seneviratne et al., 2010). Within the upper Danube
region initial results on the validation of soil moisture products sug-
gested that radio-frequency interference can be a problem (dall'Amico
et al., 2012) but that the spatial pattern of soil moisture variability was
similar to in situ measurements, even if SMOS tended to generally un-
derestimate soil moisture (Schlenz et al., 2012).

Radar scatterometers can also be suitable for the retrieval of soil
moisture, depending on the frequency they operate in (Seneviratne et
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al., 2010). These include ESA's ERS-1/2 Advanced Microwave Instru-
ment Scatterometer (AMI-SCAT) (50 km spatial resolution) and the
METOP-A/B/C Advanced Scatterometer (ASCAT) (50 km) (Wagner et
al., 2003; Bartalis et al., 2007). Finally, NASA's Soil Moisture Active and
Passive (SMAP)mission carries on-board active and passive L-band sen-
sors and was launched on the 31st January 2015. The mission is de-
signed to collect global observations of soil moisture at a spatial
resolution of 9 km, with a revisit time of 2–3 days.

Soil moisture itself is a Global Climate Observing System (GCOS) Es-
sential Climate Variable (ECV) and ESA's Climate Change Initiative (CCI)
programme has funded the creation of a more than 30-year long soil
moisture dataset by merging active (ERS AMI-SCAT and METOP
ASCAT) and passive (SMMR, SSM/I, TMI, and AMSR-E) soil moisture re-
trievals (Wagner et al., 2012). This product at 0.25° spatial resolution
aims to address the discrepancies that have been observed (e.g.
Reichle et al., 2007; Rüdiger et al., 2009) between different products de-
veloped for different (or the same) microwave sensors.

Other sensors that have been used in the retrieval of soilmoisture in-
clude gravity recovery instruments (Seneviratne et al., 2010) and even
global positioning system (GPS) receivers (Larson et al., 2008). Seasonal
variations in terrestrial water content (TWC), including soil moisture,
groundwater, snow and surface water, result in variations of the Earth's
gravity field, which can be accurately measured with NASA/DLR's Grav-
ity Recovery and Climate Experiment (GRACE) (e.g. Tapley et al., 2004;
Wahr et al., 2004; Andersen et al., 2005; Swenson et al., 2008; Rodell et
al., 2009). However, separation of the soil moisture contribution to the
total observed terrestrial water content requires knowledge of the
other TWC components, making this technique complex and reliant
on additional data being available. In addition, any estimates can only
be done at much coarser spatial resolutions (at best 400 km) than
those offered by microwave remote sensing. GPS satellite receivers
use L-band frequencies, similar to the SMOS and SMAP sensors, and
have shown the potential to estimate soil moisture at spatial resolutions
of circa 300m, but the effects of ground roughness and of different veg-
etation and soil types, requires further investigation (Larson et al.,
2008). The reader is referred to Schmugge et al. (2002), Wigneron et
al. (2003), de Jeu et al. (2008) and Seneviratne et al. (2010) for excellent
reviews on the remote sensing of soil moisture.

3.2.3. Precipitation
Precipitation estimates with remote sensing can be generated using

both in situ radar systems and space-borne sensors. Michaelides et al.
(2009) and Tapiador et al. (2012) provide excellent reviews of remote
sensing techniques for precipitation measurements. Typically, single
polarisation weather radar systems have been used to derive rainfall
rate, but limitations such as calibration issues and contamination by
ground returns amongst others make them less than ideal for precipita-
tion mapping. Recent technological advances have led to the develop-
ment of more suitable polarimetric radar systems (also referred to as
dual-polarisation radars) that overcome some of the limitations at-
tached to single polarisation weather radars (Michaelides et al., 2009).
For about three decades, rainfall has been retrieved from satellite instru-
ments employing the visible, infrared and microwave regions of the
spectrum. However, most of the satellite observations are discarded
due to cloud contamination and issues with the variability of emissivity
over land-water areas and especially in coastal areas. Another limitation
is the coarse spatial resolution of the satellite sensors that ranges from
10 km2 over land to 50 km2 over the ocean, and the common assump-
tion that rainfall is horizontally and vertically homogeneous.

According to Stephens and Kummerow (2007) the optimal ap-
proach to retrieve precipitation from space is by combining data from
passive and active sensors. A major step towards this direction was
made with the launch in 1997 of the space-borne Tropical Rainfall Mea-
suring Mission (TRMM) that carries on-board two primary rainfall sen-
sors; the 13.8 GHz Precipitation Radar (PR) and the TRMM Microwave
Imager (TMI). Numerous algorithms for the retrieval of rainfall from

TRMM data have since been developed (e.g., Iguchi et al., 2000;
Haddad et al., 1997), leading to the TRMM PR 2A25 and TRMM TMI
2A12 rainfall products. However, these two products exhibit spatial
and seasonal differences that have yet to be explained (Wang et al.,
2009) and are geographically limited to latitudes between 35°N–35°S.
A third sensor on-board TRMM, the Visible and Infrared Radiometer
(VIRS) can only provide indirect estimations of rainfall bymeans of pre-
cipitation indices.

Even thoughmost available precipitation retrievalmethods focus on
rainfall rather than snowfall, high-frequency passive microwave
wavebands (e.g. on AMSU) can provide snow detection and frozen pre-
cipitation estimations (Kongoli et al., 2004; Vila et al., 2007;Michaelides
et al., 2009). In fact, the Microwave Surface and Precipitation Products
System (MSPPS) (now Microwave Integrated Retrieval System
(MIRS)) is a suite of operational global products derived from the
NOAA Advanced Microwave Sounding Unit (AMSU), including precipi-
tation rate, total precipitable water and snow cover (Ferraro et al.,
2005; Vila et al., 2007).

The need for uniformly calibrated precipitation products that are in-
dependent of variation caused by different sensors is to be addressed by
the international Global Precipitation Measurement (GPM) mission,
which employs a constellation of passive microwave sensors. The GPM
aims to provide high resolution satellite precipitation products every
2–3 h for use in various applications, such as hydrology and climatic
studies. Building on the capabilities of the TRMM PR and TMI, the
GPM-Core Observatory, which was launched in February 2014, covers
latitudes between 65°N–65°S and contributes to the GPM constellation
of sensors that combined cover the entire globewith datasets (Levels 0–
3) freely available online. A global dataset for satellite-derived rainfall is
the Global Satellite Mapping of Precipitation in Near-Real-Time
(GSMaP_NRT) by the Japan Aerospace Exploration Agency (JAXA) Glob-
al Rainfall Watch System (Ver. 3.0), which provides global (60°N–60°S)
rainfall rate (mm/h) at hourly intervals by combining various remote
sensing data, including the GPM-Core Microwave Imager (GMI),
TRMM TMI, DMSP (Defence Meteorological Satellite Programme)
SSMIS, NOAA AMSU and METOP AMSU.

3.2.4. Snow cover
Both optical andmicrowave remote sensing are used for snow cover

mapping. Even though optical remote sensing is limited to mapping
snow extent, much more information can be derived from microwave
data; this includes snow water equivalent (SWE; mass of water per
unit area), snow depth (SD) (a relevant measurement because of its re-
lationship to SWE), snow extent, and snow state (wet/dry). The use of
optical data is based on the fact that snow reflects radiation strongly
in the visible and very poorly in the NIR regions of the EM spectrum.
Dozier (1989) mapped snow using the ratio of Landsat TM reflectance
in the visible and NIR, a technique that had been previously used in
the 1970s (e.g. Kyle et al., 1978) and was later adapted to develop the
normalised-difference snow index (NDSI) for MODIS (Hall et al., 2002;
Hall and Riggs, 2007) and Landsat ETM+ (Salomonson and Appel,
2004). NOAA AVHRR has also been used to map snow cover (e.g.
Gesell, 1989; Voigt et al., 1999; Akyürek and Şorman, 2002;
Matikainen et al., 2002; Hüsler et al., 2012) despite its coarse spatial res-
olution (1 km), because it has a longdata archive and a very frequent re-
visit time (twice daily). A limitation of using optical data to map snow
cover is that it is often difficult to separate clouds from snow, because
snow may show a similar spectral response to clouds in the visible
and TIR (Akyürek and Şorman, 2002; Miller et al., 2005). Another chal-
lenge is that the reflectance of snow decreases with impurity and age
(seasonal and even daily ageing) (König et al., 2001; Dietz et al., 2012)
and vegetation (resulting in surface heterogeneity) might also affect
the reflected signal (Nolin, 2010).

Snow attenuatesmicrowave radiation,which is positively correlated
with the amount of snow in the snowpack (Chang et al., 1987; König et
al., 2001; Clifford, 2010). In a similar manner to soils, the dielectric
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Table 3
Linkage between selected catchment/landscape features, fluvial processes, ecosystems services and their detection with remote sensing. (builds on Andrew et al., 2014; Large and Gilvear, 2014). Indicative means the list is not exhaustive.

Catchment feature,
or land cover

Inferred processes
and characteristics

Ecosystem functions Ecosystem services (indicative) RS products (required) Remote sensing source (indicative)

Catchment
delineation

Catchment area, morphometry and hydrodynamic behaviour Range of freshwater and terrestrial
habitats

Water quantity and quality;
seasonality

Topography DEM derived from varied sources,
including LiDAR, RADAR,
UAV-based photography and aerial
photography

Slope Low slopes reduce energy gradient for transfer of water, sediment &
nutrients, promoting storage and biogeochemical processing;
reworking of sediment in active reaches

Hydraulic diversity; channel
dynamism; habitat creation;
sediment storage; habitat
heterogeneity; increased wetted
perimeter

Flood mitigation; water quality Topography DEM derived from varied sources,
including LiDAR, RADAR,
UAV-based photography and aerial
photography

Catchment water
balance and water
level fluctuations

Water dynamics, quantity, quality and provenance of water and
sediment runoff controlling biogeochemical processes including
nutrient flux; snow accumulation; runoff volumes and timings;
groundwater recharge and connectivity within alluvial flatlands;
seasonal variations in water levels; movement of migratory species;
crop phenology

Provisioning; supporting and
regulating; cultural climate
regulation; removal of pollutants;
fish production

Water supply; biodiversity;
carbon sequestration; flood
mitigation and regulation;
migratory species; tourism

Evapotranspiration
Precipitation
Soil moisture
Water, snow/ice extent
and duration
Water level
Groundwater

Thermal RS, VIs, climate data
RADAR, PM
RADAR (e.g. SMAP)
Optical, RADAR, PM
RADAR altimetry
Gravity surveys, subsidence

Hyporheic zones
and groundwater

Links to water flow and water quality in surface waters Groundwater dependent terrestrial
ecosystems including wetlands

Water supply;
Flood mitigation and regulation;
Biogeochemical filtration;
biodiversity

Land cover map
Species map, spectral
diversity

Multispectral and multitemporal
RS, HS.
Range or variability of
biochemistry, spectral indices or
reflectance variation

Hydromorphological
alteration

Elimination of flood inundation; loss of channel dynamism; altered
supply of sediment & nutrients

Loss of natural land cover;
hydrological alteration; habitat
change

None Land cover
Feature extraction (e.g.
embankment length,
presence of dams etc)

Multispectral RS, HS

Riparian/river bank
woodland

Shading, allochthonous leaf litter and woody debris input Habitat creation and hydraulic
diversity; cooling of water, food
source

Biodiversity; fisheries Spectral diversity
Proxy indicators (e.g.
canopy structure,
productivity, gap fraction)

Range or variability of
biochemistry, spectral indices or
reflectance variation
Varied e.g. LiDAR, Multispectral, HS,
HY, multi-temporal RS

Floodplain physical
habitat mosaic

Hydromorphological heterogeneity and channel dynamism; varied
land use patterns

Range of freshwater-terrestrial
habitats; ecotone creation

Biodiversity; fisheries Spectral diversity, species
map, land cover map, LAI,
biomass

Range or variability of
biochemistry, spectral indices or
reflectance variation, LiDAR, image
texture, Multispectral, HS, HY
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Catchment
disturbance

Potential for changing hydrological regime, channel dynamism,
nutrient cycling, water quality, biodiversity

Potential loss/degradation of natural
land cover; hydrological alteration

Changed natural ecosystem
services

Change in biomass/plant
traits
Plant stress
Fire detection
Drought monitoring

Multi-temporal RS
VIs, HY
Thermal anomalies, fire products
(e.g. MODIS)
Water content, surface temperature
& ET

Wetlands Plant and animal succession processes; enhanced nutrient cycling and
storage; semi-aquatic habitats

Carbon sequestration, phosphorous
uptake and denitrification; habitat
heterogeneity; flow attenuation;
refugia

Water supply; water quality;
biodiversity

Land cover map
Species map; spectral
diversity

Multispectral and multitemporal
RS, HS.
Range or variability of
biochemistry, spectral indices or
reflectance variation

Floodplain forest Substrate stabilisation; enhanced hydraulic processes Flow attenuation, enhanced nutrient
cycling and storage; habitat
heterogeneity

Carbon sequestration; flood
mitigation; biodiversity; water
quality

Land cover map; biomass Multispectral and multitemporal
RS, HS

Floodplain lakes Water storage; nutrient cycling Refugia; habitat heterogeneity Water supply; carbon
sequestration; water quality;
fisheries; biodiversity

Land cover map
Water colour
(phytoplankton,
suspended matter, CDOM)
and water clarity, LWST,
ice cover

Multispectral and multitemporal
RS, HS.
Spectral analysis, multispectral RS.
Thermal RS

Agriculture Potential for increased runoff; enhanced sediment input; water quality
deterioration

Loss of natural land cover;
hydrological alteration

Natural ecosystem services
reduced with increased crop
production

Land cover map, LAI Multispectral and multitemporal
RS, HS, HY, LiDAR

Woodland
plantation

Substrate stabilisation; enhanced hydraulic roughness Flow attenuation; biomass increase Timber production; flood
mitigation

Land cover map, biomass Multispectral and multitemporal
RS, HS, HY, LiDAR

Urban areas Potential for increased runoff and water quality deterioration Loss of natural land cover;
hydrological alteration

None Land cover map Multispectral and multitemporal
RS, HS

LiDAR (Light Detection and Ranging);MS (Multispectral, e.g. Landsat ThematicMapper); HS (High spatial resolution imagery (e.g.WorldView-3, Google Earth); HY (hyperspectral imagery/data); PM (passivemicrowave); VIs (vegetation indices); ET
(evapotranspiration); CDOM (coloured dissolved organic matter); LWST (lake water surface temperature).
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constants of ice and water are very different, which enables the use of
microwave remote sensing to map snow. The depth of snow that can
be mapped depends on the microwave wavelength; ranging from a
minimum of around 2 cm (Dietz et al., 2012) to a maximum of 100
times themicrowavewavelength (Clifford, 2010). Inmicrowave remote
sensing of snow, the size and shape of the snow crystals can affect the
estimations (Foster et al., 1999), as well as depth, temperature, snow
state and density (Schmugge et al., 2002). In addition, the presence of
dense vegetation and liquidwater in the snowpack can lead to underes-
timation of SD and SWE (Dietz et al., 2012), when passive microwave
sensors are used. Using early morning satellite overpasses (local time)
can minimise the impact of wet snow on snow mapping (Schmugge
et al., 2002). Alternatively, active microwave remote sensing is more
suitable for mapping wet snow (e.g. Baghdadi et al., 1997; König et al.,
2001), with the added bonus of finer spatial resolutions than passive
microwave satellite sensors.

In the 1980s, the US NationalWeather Service (NWS) developed op-
erational remote sensing products for snow hydrology, using NOAA
AVHRR and GOES to produce periodic river basin snow cover extent
maps (Schmugge et al., 2002) and since 2002 the Aqua AMSR-E has
been used to produce a global SWE Level 3 product. MODIS data have
also been used to derive a suite of snow products at various spatial
(500 m–30 km) and temporal (daily-monthly) resolutions. In addition,
the snowmelt runoff model (SRM)was adapted to use remotely-sensed
snow cover information at basin-scales (Martinec et al., 2008). The
reader can refer to, for example, König et al. (2001), Schmugge et al.
(2002), Clifford (2010), Nolin (2010) and Dietz et al. (2012) for more
detailed reviews on the remote sensing of snow cover.

3.2.5. Land surface temperature (LST)
Atmospherically corrected brightness temperature retrieved using

remote sensing thermal sensors are used in land surface temperature
retrieval. There are three techniques for the retrieval of LST from remote
sensing data; single channel, generalised split window (GSW) and dual
angle (or dual algorithm) (DA) approach. The single channelmethod re-
quires a comprehensive radiative transfer model and atmospheric pro-
files. The split window approach, combines two thermal wavebands
and accounts for atmospheric effects based on the differential absorp-
tion in adjacent infrared bands. However, because of the large emissiv-
ity differences between thermal wavebands over land due to
vegetation, topography and soil, this method can be problematic. Land
surface emissivity studies have been conducted to overcome this prob-
lem and various techniques have been proposed in the literature for
NOAA AVHRR and Terra/Aqua MODIS (e.g. Wan and Dozier, 1996;
Becker and Li, 1990; Mao et al., 2005; Pinheiro et al., 2006), (A)ATSR
(e.g. Sòria and Sobrino, 2007; Galve et al., 2009) and MSG Spinning En-
hanced Visible and Infrared Imager (SEVIRI) (e.g. Jiang and Li, 2008;
Qian et al., 2013; Freitas et al., 2013). The Terra/Aqua MOD11 LST prod-
uct uses a split-window approach that utilises thermal bands 31 and 32.
The dual angle approach is based on the differential absorption of a sin-
gle waveband due to different viewing angles. In order to apply this
technique two scenes simultaneously acquired by different satellites,
e.g. the geostationaryMSG and polar-orbiting Television InfraredObser-
vation Satellites (TIROS-series) (Chédin et al., 1982) or a single scene
from a satellite withmulti-angle acquisition capability, such as the (Ad-
vanced) Along-Track Scanning Radiometer ((A)ATSR) on-board
Envisat, can be used. The second option is more commonly employed
using (A)ATSR data (e.g. Kustas and Norman, 1997; Sobrino et al.,
1996, 2004; Sòria and Sobrino, 2007) or GOES andMultifunction Trans-
port Satellite (MTSAT) data (Freitas et al., 2013). Finally, a robust empir-
ical technique has been developed specifically for the Terra Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER); the
Temperature Emissivity Separation (TES) algorithm (Gillespie et al.,
1998) that uses ASTER TIR wavebands to estimate LST. The two main
advantages of using Terra ASTER for LST retrievals are its fine spatial res-
olution (90 m) and more frequent revisit capability (twice daily)

compared to other thermal sensors (e.g. NOAA AVHRR, (A)ATSR,
MODIS, etc.).

Even thoughmostly thermal sensors are used in LST-retrievals, there
exist a few studies where passive microwave sensors were employed
(Tomlinson et al., 2011), which have the advantage of providing mea-
surements even on cloudy days. Despite the coarse spatial resolution
of passive microwave sensors (5–70 km depending on frequency), the
AMSR-E (Chen et al., 2011) and more commonly the SSM/I (e.g.
McFarland et al., 1990; Basist et al., 1998; Peterson et al., 2000;
Williams et al., 2000; Fily et al., 2003) have been used to estimate LST.
For examples of in-depth reviews on the remote sensing of land surface
temperature, the reader can refer to Prata et al. (1995), Dash et al.
(2001), Schmugge et al. (2002), Tomlinson et al. (2011) and Li et al.
(2013).

4. Mapping catchment land cover and other drivers of lake
behaviour

There are multiple catchment drivers of lake change due to intensi-
fication of human activities and climate change. Lakes across the globe
can be affected by a combination of different stressors and pressures,
based on vicinity to human establishments, type and intensity of
human activitieswithin the catchment, type and ratio of natural over al-
tered landscape in the catchment, protection status and geographical lo-
cation. Human activities such as agriculture, deforestation, urbanisation
and industrial activities can be grouped under the umbrella of land
cover/land use change (LULC), whichmay have various direct and indi-
rect effects on lake water quality, for example increased nutrient load-
ing and eutrophication (e.g. Huang et al., 2013; Keatley et al., 2011),
pollution (e.g. IJC, 1980), acidification (e.g. Nghiem et al., 2011), anoxic
conditions (e.g. Valero-Garcés et al., 2000). The impact of other human
activities such as tourismand commercialfishing on lake ecosystem sta-
tus and ecosystem services is not possible to map and quantify with re-
mote sensing unless their impact is measured indirectly. For example,
by mapping forest area reduction due to tourism-related development
(Chaplin and Babyn, 2013) or estimating epipelagic fish distribution
and abundance in shallow waters (Churnside et al., 2003).

Despite the potential of remote sensing to provide direct estimation
of a wide variety of ecosystem functions and services (cf. those de-
scribed above) both Andrew et al. (2014) and de Araujo Barbosa et al.
(2015) note that the majority of published studies that have attempted
to map ecosystem functions and services (and by inference related
catchment processes) do so using indirect proxies, such as land cover
and land use data, derived mainly from remotely sensed sources
(Table 3). It is pertinent, therefore, to reflect briefly on how land cover
information is derived, and more importantly, the limitations and con-
siderations to its application for monitoring change in ecosystem func-
tions and services of large areas.

Perhaps the most common and one of the most basic forms of land
cover analysis using remotely sensed data is land cover classification.
This relates spectral and textural informationwithin an image to specif-
ic land cover classes (as defined by the user) to produce a land cover
map, from which land use may be inferred. There are many methods
of image classification, from ‘traditional’ statistically-based per-pixel
methods that assign individual pixels to land cover classes based upon
their spectral response, to object-based approaches which segment
the landscape into parcels based upon spectral response, shape, texture
and other object characteristics. Additionally, a classification may be
‘hard’ where pixels are assigned to a single class, or ‘soft’ where pixels
are assigned multiple class memberships. The latter is particularly rele-
vant, when information relating to small scale changes in land cover are
important and where measuring change requires greater precision.
More often it is used when the spatial resolution of the instrument
does not match the intrinsic scale of land cover heterogeneity within
an area of interest. For example, Probeck et al. (2005) were able to de-
rive subscale land cover information from relatively coarse (1 km)
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NOAA AVHRR imagery of the upper Danube by using a fuzzy classifica-
tion approach, from which results were produced that compared
favourably with independent datasets. A similar approach was used by
Ludwig et al. (2003b). In both cases the fuzzy classification method
used was spectral unmixing but alternatives include the use of artificial
neural networks (e.g. Aitkenhead et al., 2008) and other types of ma-
chine learning.

The methods used to classify remotely sensed data are a field of re-
search in themselves, and whilst helpful reviews of the current state
of land cover extraction from remote sensing are available (e.g. Cihlar,
2000; Aplin, 2004; Li et al., 2014), the myriad of methods and ap-
proaches leads to variability in the land cover map outputs derived by
individual researchers and groups, limiting their wider applicability.
To address this, some studies have employed the use of standardised
LULC products (e.g. Table 4). These products tend to be produced from
a single satellite sensor, removing variability associated with multiple
sensor characteristics. Additionally, products may be single-year or
multi-year products, enabling change to be detected using a
standardised set of data characteristics and land cover classes. Thus,
the use of a LULC product may reduce some of the uncertainty associat-
ed with individuals undertaking a classification exercise in isolation.
However, the uptake in use of LULC products has been slow, put down
partly to a lack of awareness but also a lack of confidence in spatial ac-
curacy (Pfeifer et al., 2012; Congalton et al., 2014). Most operational
products are still restricted to coarse spatial resolution data (Table 4),
which whilst providing frequent temporal updates may be a deterrent
towards their use for some ecosystem studies.

An additional limitation of LULC analysis is determining a biophysi-
cal basis for linking particular LULC classes to ecosystem functions and
services. For individuals and groups undertaking their own classification
there is often a tension when defining appropriate LULC classes to map
between those features and classes that can be extracted from remotely
sensed data, i.e. those that are spectrally separable, and those features
and classes that are directly correlated with ecosystem function and/
or catchment processes. The resulting class definitions are, therefore,
often a pragmatic solution using features and LULC classes that can be
detected remotely and using these as proxy indicators of the environ-
mental variable of interest (e.g. Table 3). These proxies, however, may
have limited relevance, being often the result of hypothesised but large-
ly untested relationships (Andrew et al., 2014; Seppelt et al., 2011) lead-
ing to unreliable outputs when compared to field observations (e.g.
Eigenbrod et al., 2010). This potentially becomes evenmore problemat-
ic when using standardised LULC products, where there are often incon-
sistencies in class definitions between products (Congalton et al., 2014)
and where different products are produced at different spatial resolu-
tions, thus limiting their use as proxy indicators.

Also, by assuming that the same ecosystem value can be applied to
the whole of a particular class ignores any scale dependency in ecosys-
tem processes and leads to inaccuracies when compared with indepen-
dently observed data (Eigenbrod et al., 2010). Thus ecosystem services
derived from land cover information will be highly dependent upon
the efficacy of linking a land cover class to a particular ecosystem

service/function, the spatial resolution of the data and the accuracy of
image classification (de Araujo Barbosa et al., 2015).

The accuracy of image classification is an important, but often ig-
nored factor in determining the reliability of areal change in land
cover class(es) derived from a classified map. Change in key indicator
classes, such as woodland or urban areas, are important in understand-
ing changes in lake water quality, habitat and other critical ecosystem
services. However, as Olofsson et al. (2013) effectively argue, informa-
tion relating to the accuracy of land cover outputs and products, includ-
ing commonly used measures such as overall accuracy and the kappa
coefficient, fail to provide enough information to effectively judge the
effect that classification error has on estimates of areal change. To ad-
dress this they suggest mapped areas should be adjusted using a strati-
fied estimator approach (Olofsson et al., 2013). At the very least, the
uncertainty and error associated with the mapping of ecosystem prop-
erties should be addressed and reported, with Rocchini et al. (2013)
providing a useful summary of good practise for this very purpose.
Even when using globally available LULC products the stated accuracy
is not always acceptable for the purpose of mapping change
(Congalton et al., 2014). Karimi and Bastiaanssen (2015) noted that
the overall accuracies reported for global land cover maps varied be-
tween 69 and 87%, suggesting that such products should be used with
caution in water accounting applications.

All of the limitations above suggest that whilst LULC information de-
rived from remotely sensed sources has the potential for quantifying
and mapping selected catchment and ecosystem functions and services
across large areas, the limitations in terms of applicability (biophysical
basis of land cover classes), data quality (accuracy) and data properties
(spatial and temporal resolution) should be considered carefully when
deciding how such data should be used. Fuller et al. (2003) provide a
useful commentary on experiences of mapping the UK with remotely
sensed data highlighting the limitations of comparing between prod-
ucts, whilst Seppelt et al. (2011) provide a useful review of critical ques-
tions that should be raised when reviewing ecosystem service
assessments at a regional scale, which are directly relevant to remote
sensing-based studies.

5. Remote sensing of lake level and volume

Finally, whilst this review has thus far focussed on catchment func-
tions and characteristics, it is also pertinent to briefly assess the potential
of remote sensing to provide information regarding lakes themselves. The
remote sensing techniques and sensors used to map lake water quality
are reviewed by Tyler et al., in this Special Issue. Remote sensing can
also have a role to play in detecting water bodies (e.g. Verpoorter et al.,
2014), and estimating lake water level change and volume.

Bothwater level and volume are importantwith respect to lake ecol-
ogy, being determinants of water residence time, flushing rate and
mixing. They are also highly influenced by human activities, with the
construction of dams and impoundments, and associated freshwater
withdrawal for domestic, agricultural and industrial use responsible
for significantly altering water level (and, thus, volume) in some lakes

Table 4
Example global land cover datasets suitable for large area land cover analysis.

Product Sensor Satellite Spatial resolution Temporal resolution

GLC20001 VGT SPOT 1 km Single date: 2000
MCD12Q12 MODIS Aqua, Terra 500 m Annual: 2001–2007

ESA CCI-LC3 MERIS ENVISAT 300 m
Three epochs: 2008–2012;
2003–2007; 1998–2002

ESA CCI LC Seasonality
(Three products: vegetation, snow cover & burned area)

MERIS ENVISAT 300 m Annual

1 European Commission (EC) Global Vegetation Monitoring (GVM) Unit Global Land Cover (GLC) 2000 product.
2 NASA Land Processes Distributed Active Archive Center (LP DAAC) Land Cover Type product.
3 European Space Agency (ESA) Climate Change Initiative (CCI) Land Cover (LC) product.
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and reservoirs globally (in Lake Chad, for example). However, not all
lakewater level change is caused by direct human intervention. Climate
change and natural climatic fluctuations are also important drivers of
water level change/fluctuation in freshwater bodies, particularly in
closed lake basins in endorheic regions (Hutchinson, 1957).

5.1. Remote sensing of lake water level

Water level change can be retrieved from remote sensing altimetry
data (e.g. Birkett, 1995; Crétaux and Birkett, 2006; Hwang et al., 2011;
Mercier et al., 2002; Ponchaut and Cazenave, 1998; Swenson and
Wahr, 2009) with very high accuracy (e.g. 3–33 cm; Birkett and
Beckley, 2010; 25–53 cm; Frappart et al., 2006). Altimeters can be
radar (microwave) or laser (visible and IR), but the second are sensitive
to the presence of clouds. They both transmit pulses and receive the
reflected signal, so the theoretical basis for measurements is similar
(Duan and Bastiaanssen, 2013). Lake surface water level is estimated
by calculating the difference between satellite height in respect to a ref-
erence surface (e.g. Earth's centre) and the satellite-to-surface range
(calculated by the time taken for the pulse to return to the sensor
since transmission), correcting at the same time for instrumental, atmo-
spheric and other effects (Duan and Bastiaanssen, 2013). The disadvan-
tage of altimeters is that they can only returnmeasurements from along
their track, which does not cover the globe. As a result, only specific
water bodies (that fall into the satellite's track) can be detected. Laser al-
timeters such as the Geoscience Laser Altimeter System (GLAS) on-
board ICESat (Ice, Cloud, and land Elevation Satellite) are more suitable
for relatively small water bodies due narrower footprint size (~100 m)
compared to radar altimeters (several kilometres).

Several radar altimeters were until recently or currently operational,
including ERS Radar Altimeter (RA) and Envisat RA-2, the Poseidon sen-
sors on-board TOPEX/Poseidon, Jason-1 and Jason-2 (or Ocean Surface
TopographyMission, OSTM), and GeoSat Fellow On (GFO) Radar Altim-
eter. These sensors were used to create three distinguished databases
that include lakewater level estimates: (1) ESA's River and Lake project,
(2) US Department of Agriculture (USDA) Global Reservoir and Lake
Monitoring (GRLM) programme, and (3) Laboratoire d'Etudes en
Géophysique et Océanographie Spatiales (LEGOS) and Geodesy, Ocean-
ography and Hydrology from Space (GOHS) Hydroweb. A fourth data-
base is based on ICESat laser altimetry; ICESat-GLAS level 2 Global
Land Surface Altimetry data (ICESat-GLAS). For an excellent overview
of these databases see Duan and Bastiaanssen (2013).

5.2. Remote sensing of lake water quantity (volume)

Lake water quantity (volume) cannot bemeasured directly from re-
mote sensing. Water level information is combined with bathymetric
information of the water body in order to produce estimates of lake vol-
ume. Apart from using traditional sonar techniques, bathymetric maps
can also be produced using GPS and laser transit survey data (e.g.
Wilcox and Los Huertos, 2005), and in fact the notion of a laser
bathymeter is not new (Muirhead and Cracknell, 1986). To replace the
need for bathymetric predictions, new techniques that make use of vis-
ible and IR-based lake surface area estimations have been developed for
the retrieval of lakewater volume (e.g. Duan and Bastiaanssen, 2013; Lu
et al., 2013). Finally, satellite altimetry-derived water levels of lakes can
provide estimates of lake water volume change, when combined with
satellite or otherwise-derived surface water area (e.g. Becker et al.,
2010) or detailed bathymetric maps (Crétaux and Birkett, 2006).

6. Observations and conclusions

We began this review by presenting a suite of datasets (Fig. 2), some
derived from remote sensing, that have the potential to capture both
status and change in lake catchments. This is presented as a precursor
to understanding both the causes and drivers of lake change, and

which can complement direct observations of lake behaviour by satel-
lite remote sensing (Tyler et al., in this issue).Whilst by nomeans an ex-
haustive review of the capabilities of remote sensing and geospatial
technologies in this field, this paper points towards some of the key
catchment variables that can be estimated, both directly and indirectly,
as well as the limitations and challenges currently faced.

From the work that is reviewed it is clear that remote sensing is an
important tool for mapping ecosystem functions and aiding our under-
standing of catchment drivers of lake change, with promising results
frequently reported. However, it is also clear that many of the results
are highly specific to a particular time and/or place, and thus a manifes-
tation of the ‘one time one place’ approach identified by Woodcock
(2002) as a common cause of uncertainty in the application of remotely
sensed data for other applications. Time and again various reviews point
to continued issues with respect to multiple scales, sensors, reliability
and othermethodological constraints that limit the operational applica-
tion of remote sensing for extracting critical ecosystem functions. Many
suggest further work is needed to develop techniques that combine
multi-source information to provide disaggregated products for catch-
ment monitoring and modelling.

In part a response to these issues, several reviews refer to increasing
efforts to integrate information across a variety of sensors and scales,
and the development of many standardised remotely sensed products
(Andrew et al., 2014, Pfeifer et al., 2012). Issues of spatial and biophys-
ical relevancy persist, but with the advent of higher spatial resolution
global datasets becoming available (e.g. Hansen and Loveland, 2012)
and the introduction of new complementary in situ sensor systems ca-
pable of measurements at high temporal and spatial -frequencies
(Crawford et al., 2014) at least some of these concerns will continue
to be addressed.

As stated in our introduction, the future of remote sensing for catch-
ment, ecosystem and lake-based studies looks very promising. ESA's Co-
pernicus programme will not only include Sentinel's 2 and 3 (which
themselves will include multiple versions, e.g., Sentinel 3A, 3B and 3C,
thereby providing a constellation of ‘observers’) but also includes a C-
band SAR sensor on-board Sentinel-1 (launched April 2014) to provide
observations of ice, oil spills and land surface monitoring. Additionally,
future missions such as ESA's BIOMASS (planned for 2020) will provide
enhanced information on above-ground biomass dynamics at 50m spa-
tial resolution, whilst ESA's FLEX (Fluorescence Explorer), Germany's
EnMAP (30 m spatial resolution) and NASA's HYSPIRI (60 m) satellite
sensors will allow regional to global assessments of plant biophysical
and biochemical status, biogeochemical cycling, erosion monitoring
and ecosystem fragmentation and disturbance. Thus the range of
spaceborne sensors for deriving quantitative estimates of critical eco-
system and catchment variables appears to be in good shape looking
forward.

In addition to newoptical and SAR sensors described above and else-
where in this review, there is clearly much progress in developing
geospatial technologies which will have the potential to revolutionise
the mapping of ecosystem functions. These include the development
of UAV platforms for low cost, high resolution data gathering, as well
as new hyperspectral sensor technologies and multispectral LiDAR
that have the potential for direct estimation of biophysical variables
(Woodhouse et al., 2011) and plant traits, removing the need for reli-
ance on simple proxies. Furthermore, the existence of platforms that fa-
cilitate the use of extensive datasets and long remote sensing archives,
such as the Google Earth Engine (GEE) for environmental data analysis,
can andwill provide, in part, the necessary infrastructure that the era of
‘Big Data’ asks for.

Tomaximise the exploitation of new technologies for ecosystem ser-
vice assessment Andrew et al. (2014) note the need for close collabora-
tion between remote sensing scientists, ecologists and social scientists.
Clearly, for this application the same is true of remote sensing scientists
and limnologists, hydrologists, ecologists and many more to truly un-
derstand the drivers of lake change and behaviour across the globe,
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with thepotential formuchof this to be informed by remote sensing ob-
servations. Multidisciplinary collaboration is a necessity for the integra-
tion and assimilation of geospatial data and new technologies in
hydrological modelling and traditional limnological studies, and in
order to be able to understand and interpret both the uncertainties of
the data used and the research outputs. The inclusion of remote sensing
scientists in limnological research is therefore considered prudent and
often an essential step towards understanding remote sensing data
and the specific uncertainties, interpretation and limitations related to
remote sensing products before their use. In this respect, projects such
as the UK Natural Environment Research Council-funded GloboLakes
project (Global Observatory of Lake Responses to Environmental
Change) is one of several initiatives to address issues of lake change in
just such a way, andwhichwill lead to paradigm shifting developments
in the characterisation of the planet's freshwater resources and re-
sponses to environmental change.
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