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Abstract 33 

Sun-induced fluorescence (SIF) has been proven to serve as a proxy of photosynthesis 34 

activity and therefore, as an early indicator of physiological alterations for global monitoring 35 

of vegetation. However, the interpretation of SIF over different spatial resolutions is critical 36 

to bridge the existing gap between local and global scales. This study provides insight into 37 

the influence of scene components, and forest structure and composition on the quantification 38 

of the red and far-red fluorescence signal as an early indicator of forest decline. The 39 

experiments were conducted over an oak forest (Quercus ilex) affected by water stress and 40 

Phytophthora infection in the southwest of Spain. SIF retrievals through the Fraunhofer Line 41 

Depth (FLD) principle with three spectral bands F (FLD3) was assessed using high resolution 42 

(60 cm) hyperspectral imagery extracting sunlit crown, full crown and aggregated pixels. 43 

Results showed the link between F (FLD3) extracted from sunlit crown pixels and the tree 44 

physiological condition in this context of disease infection, yielding significant relationships 45 

(r
2
=0.57, p<0.01) for midday xylem water potential (ψ), (r

2
=0.63, p<0.001) for the de-46 

epoxidation state of the xanthophyll cycle (DEPS), and (r
2
=0.74, p<0.001) for leaf-level 47 

measurements of steady-state fluorescence yield (Fs). In contrast, a poor relationship was 48 

obtained when using aggregated pixels at 30 m spatial resolution, where the relationship 49 

between the image-based F (FLD3) and Fs yielded a non-significant relationship (r
2
=0.25, 50 

p>0.05). These results demonstrate the need for methods to accurately retrieve crown SIF 51 

from aggregated pixels in heterogeneous forest canopies with large physiological variability 52 

among individual trees. This aspect is critical where structural canopy variations and the 53 

direct influence of background and shadows affect the SIF amplitude masking the natural 54 

variations caused by physiological condition. FluorFLIGHT, a modified version of the three 55 

dimensional (3-D) radiative transfer model FLIGHT was developed for this work, enabling 56 

the simulation of canopy radiance and reflectance including fluorescence at different spatial 57 
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resolutions, such as may be derived from proposed satellite missions such as FLEX, and 58 

accounting for canopy structure and varying percentage cover. The 3-D modelling approach 59 

proposed here significantly improved the relationship between Fs and F (FLD3) extracted 60 

from aggregated pixels (r
2
=0.70, p<0.001), performing better than when aggregation effects 61 

were not considered (r
2
=0.42, p<0.01). The FluorFLIGHT model used in this study improved 62 

the retrieval of SIF from aggregated pixels as a function of fractional cover, leaf area index 63 

and chlorophyll content yielding significant relationships between Fs ground-data 64 

measurements and fluorescence quantum yield estimated with FluorFLIGHT at p<0.01 65 

(r
2
=0.79). The methodology presented here using FluorFLIGHT also demonstrated its 66 

capabilities for mapping SIF at the tree level for single tree assessment of forest physiological 67 

condition in the context of early disease detection. 68 

Keywords 69 

Fluorescence, stress detection, hyperspectral, SIF, RTM, forest dieback, oak forest, 70 

Phytophthora infection. 71 

 72 

1. Introduction 73 

Spatial and temporal estimation of photosynthesis of forest ecosystems can provide advance 74 

information on plant performance and forest dynamics in a given environment. Sun-induced 75 

chlorophyll fluorescence (SIF) has been extensively tested as a proxy of fundamental 76 

processes of plant physiology to understand the photosynthetic activity of plants and the 77 

stress development affecting photochemistry (Damm et al., 2014; Krause and Weis, 1984; 78 

Zarco-Tejada et al., 2013a). Current research efforts to monitor photosynthetic activity show 79 

a growing interest in remote sensing of the SIF signal due to its potential to be measured at 80 
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both local (high resolution images) and global scales (medium and low resolution images) 81 

being a direct proxy of photosynthesis. The first global maps of SIF were published 82 

(Frankenberg et al., 2011; Joiner et al., 2014) using the TANSO sensor on board GOSAT 83 

(Kuze et al., 2009) allowing qualitative assessments with annual and seasonal vegetation 84 

patterns (Guanter et al., 2012). The spatial resolution provided by this sensor (10.5 km) is not, 85 

however, sufficient for the understanding of the retrieved SIF in heterogeneous vegetation 86 

canopies due to the aggregation of scene components and the large effects caused by 87 

background and shadows (Zarco-Tejada et al., 2013b). The fast development of new 88 

hyperspectral sensors to be carried on board manned and unmanned airborne platforms has 89 

given rise to the retrieval of high spatial resolution SIF at local scales, which is becoming a 90 

novel area of research (Damm et al., 2015; Zarco-Tejada et al., 2013c). However it remains 91 

very challenging to cover at very high resolution the large areas required for forest 92 

monitoring analysis. This has hitherto been the main limitation in studying physiological 93 

condition of forest canopies with higher detail, as currently available satellite sensors are 94 

limited by their spatial and spectral resolution for SIF retrieval purposes. To address this gap, 95 

the ESA’s Earth Explorer Mission of the ‘Fluorescence Explorer’ (FLEX) (Kraft et al., 2012), 96 

the first mission designed to observe the photosynthetic activity of the vegetation layer has 97 

been recently approved, with 2022 as the tentative launch date. This mission will make 98 

possible, for the first time, the assessment of the dynamics of photosynthesis on forest 99 

canopies through SIF at 300 m spatial resolution, and with potential to distinguish different 100 

fluorescence signals from PSI and PSII (Rossini et al., 2015). This offers a great advantage 101 

over current techniques used for photosynthesis monitoring based on structural indices (e.g. 102 

the Normalized Difference Vegetation Index (NDVI)) acquired from conventional Earth-103 

resource satellites. 104 
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The chlorophyll fluorescence signal derived from global maps is affected by illumination 105 

effects, leaf and canopy structure and composition of vegetation, and soil / background 106 

though to a lesser extent than reflectance. The interplay of within-leaf scattering properties of 107 

leaf structure and biochemical constituents are known to affect the bidirectional chlorophyll 108 

fluorescence emission (Van Wittenberghe et al., 2015, 2014; Verrelst et al., 2015). SIF flux 109 

through a leaf, upward and downward leaf chlorophyl fluorescence emissions and scattering 110 

effects have been thoroughly studied using radiative transfer models (RTMs) (Miller, 2005). 111 

However, few fluorescence models have been developed at the leaf level and even fewer are 112 

available at the canopy level, especially for the case of heterogeneous and complex canopies. 113 

The first attempts were carried as part of a vegetation fluorescence canopy model developed 114 

in the framework of the ESTEC ESA project (16365/02/NL/FF). The FluorMODleaf (Pedrós 115 

et al., 2008) and FluorSAIL (Verhoef, 2004) leaf and canopy fluorescence models were 116 

developed within the same project. FluorMODleaf is based on the widely used and validated 117 

PROSPECT leaf optical properties model and requires inputs from PROSPECT-5 plus the 118 

σII/σI ratio referring to the relative absorption cross-sections of PSI and PSII, as well as the 119 

fluorescence quantum efficiency of PSI and PSII, represented by the corresponding mean 120 

fluorescence lifetimes τI and τII. The canopy model is based on the turbid medium SAIL 121 

model (FluorSAIL) coupled with FluorMODleaf and MODTRAN to provide the illumination 122 

levels through the canopy. The Soil Canopy Observation, Photochemistry and Energy fluxes 123 

(SCOPE) model recently developed by van der Tol et al., (2009) as a means of jointly 124 

simulating directional Top of Canopy (TOC) reflected solar radiation, emitted thermal 125 

radiation and SIF signals as well as energy balance, water and CO2 fluxes, enables vertical 126 

(1-D) modelling of  integrated radiative transfer and energy balance by combining a number 127 

of intra-canopy radiative, turbulent and mass-transfer models, bearing in mind various 128 

processes involved in leaf biochemistry (Duffour et al., 2015). Using retrievals of SIF 129 
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simulated with SCOPE, Verrelst et al. (2015) demonstrated that the main variables affecting 130 

SIF signal were determined by leaf optical properties and canopy structural variables with a 131 

contribution of 77.9% of the SIF total variability. Canopy re-absorption and scattering effects 132 

must be better understood and quantified. Consequently, it is very important to make progress 133 

on canopy-scale modelling approaches providing an explicit connection between the canopy 134 

biophysical processes, view and illumination geometry and the resulting canopy fluorescence 135 

signal. In light of the above, Zarco-Tejada et al. (2013b) demonstrated the need for RTM 136 

methods to accurately retrieve vegetation fluorescence signal from vegetation-137 

soil/background aggregated pixels. Due to the lack of complex models to simulate SIF in 138 

heterogeneous canopies, Zarco-Tejada and co-authors conducted the study using a leaf-139 

canopy fluorescence model (FluorMODleaf) combined with a geometric model to account for 140 

canopy heterogeneity (FluorSAIL) and a first-order approximation forest model (FLIM) of 141 

stand reflectance to account the effects of crown transparency and shadowing on apparent 142 

reflectance. The results demonstrated the large structural effects on the fluorescence retrieval 143 

from mixed pixels, and therefore the need to develop more complex models to account for the 144 

effect caused by the canopy architecture.  145 

This aspect becomes particularly important in the assessment of complex forest canopies 146 

characterised by high horizontal and vertical heterogeneity (Widlowski et al., 2015). 147 

Unfortunately, currently available fluorescence models are only valid on homogeneous and 148 

uniform canopies. Strategies to simulate the spectral signature in heterogeneous forest 149 

canopies have been limited by difficulties in simulating canopy structure such as Leaf Area 150 

Index (LAI), tree density, fractional cover (FC), crown overlapping or mutual shading and 151 

multiple scattering between crowns. This paper aims to fill these gaps and in doing so to 152 

assess the potential of chlorophyll fluorescence signal retrieval as an early indicator of forest 153 

decline. The novel approach consists of coupling the leaf optical model FLUSPECT (Vilfana 154 
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et al., 2016) and the three-dimensional (3-D) ray-tracing model FLIGHT developed by North, 155 

(1996) to carry the scaling up approach from leaf to canopy dealing with multiple canopy 156 

components. In particular, the study aims at assessing: i) SIF as an early indicator of forest 157 

health in a heterogeneous oak forest canopy (Quercus ilex) affected by water stress and 158 

Phytophthora infection using very high resolution airborne hyperspectral imagery, ii) the 159 

canopy structure effects on the retrieval of SIF in forest canopies using a 3-D RTM, and iii) 160 

the retrieval of SIF through model inversion using coarse-spatial resolution hyperspectral 161 

imagery.  162 

 163 

2. Materials and methods. 164 

The methods used for the assessment of SIF from hyperspectral imagery for the early 165 

detection of forest decline condition are described below, outlining field and airborne data 166 

collection, as well as the approach using the 3-D RTM FLIGHT adapted to account for 167 

fluorescence (FluorFLIGHT). In both cases, SIF was retrieved within the far-red region. 168 

2.1. Field data collection. 169 

The experimental area is located in Puebla de Guzmán (Huelva province, in southwestern 170 

Spain) (Lat 37°36'30.89"N, Lon 7°20'27.97"W) (Fig. 1). The topography is slightly hilly, 171 

with acidic and poor soils. The annual rainfall is around 490 mm with an annual average 172 

temperature of 18.1 °C, reaching an annual average of 32 °C during summer and an annual 173 

average of 12.7 °C during winter. The vegetation is mainly composed of mature trees of the 174 

species Quercus ilex subsp. Bellota with an average density of 60 trees per ha (Roig Gómez 175 

et al., 2007). Since the 1990s, trees have shown symptoms of decline, leading to high 176 

mortality rates from the 2000s (Maurel et al., 2001). This region is particularly vulnerable 177 

because of the combined effect of water deficiency, soil compaction, nutrient losses, water 178 
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erosion and the widespread distribution of soil-borne pathogen (Pytophthora cinnamomi and 179 

Pythiumspiculum) (Moralejo et al., 2009).  180 

 181 

 182 

Fig. 1. Airborne hyperspectral flight line acquired with the micro-hyperspectral imager yielding 60 183 

cm resolution (a), oak forest study site and tree crowns selected for the quantification of SIF (b), high 184 

resolution spectral reflectance extracted from sunlit and shadowed crown and soil components (c).   185 

 186 

The field data measurements were conducted in 15 oak trees (Quercus ilex subsp. Bellota) 187 

with similar height and age located in low slope areas (< 10%). The location of these trees 188 

was previously associated with the pathogenicity of P. cinmaomi (Ferraz et al., 2000) and 189 

heat-induced tree die-off processes (Natalini et al., 2016). The trees were selected to ensure a 190 

gradient in health condition based on the physiological variables: de-epoxidation of the 191 

xanthophyll cycle (DEPS), midday xylem water potential (ψ) and steady-state fluorescence 192 

yield (Fs). Three different forest physiological conditions (FPC-1,2,3) were established based 193 

(a) 

(b) 
(c) 
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on these variables, where FPC1 correspond with the healthier and more vigorous trees, FPC2 194 

with moderated affected trees, and FPC3 with declining trees. In order to determine whether 195 

FPCs differed significantly in terms of DEPS, ψ and Fs, a one-way ANOVA was performed 196 

at a 0.05 significance level. Findings indicated significant differences in physiological status 197 

for each FPC (p < 0.05). A similar procedure was used by Hernández-Clemente et al. (2011) 198 

to established physiological condition levels in a conifer forest affected by water stress. 199 

A summary of the variables measured in the field is included in Table 1. Physiological 200 

measurements were carried out concurrently with the airborne measurements (12:00 to 13:00 201 

h local time) during three consecutive days (25-28 August in 2012). ψ was measured with a 202 

pressure chamber (SKPM 1400, Skye Instruments Ltd, Powys, UK) (Scholander et al., 1965) 203 

from 12 branches per tree, three branches per orientation in the four cardinal directions. Fs 204 

was measured on five leaves per orientation and tree, with a total of 300 leaves sampled. Leaf 205 

fluorescence was measured using a FluorPen FP100 (Photon Systems Instruments, Brno, 206 

Czech Republic), which was self-calibrated at the start of each session. Although 207 

measurements made with the FluorPen FP100 differed from airborne SIF retrievals, leaf data 208 

served as a field-level assessment of variability in stress conditions (Zarco-Tejada et al., 209 

2016).  210 

Leaf biochemical constituents measured from the selected trees were total chlorophyll (Ca+b) 211 

(chlorophyll a (Ca) and chlorophyll b (Cb)), total carotenoids (Cx+c) and xanthophyll 212 

pigments, and leaf water content (Cw) and dry mass (Cs). Leaf-level measurements were 213 

collected on a total of 48 leaves per tree, 12 samples per orientation, with a total of 720 leaves 214 

sampled. The samples were collected from the top of the crown by selecting branches of 215 

illuminated areas. Leaf pigments were processed and extracted as reported by Hernandez-216 

Clemente et al. (2011). The DEPS was calculated as (A+Z)/(A+V+Z) (Thayer & Björkman, 217 

1990), where V is violaxanthin, A is antheraxanthin and Z is zeaxanthin. 218 
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Optical measurements were taken on leaves from the same branches and trees used for 219 

pigment quantification. Leaf reflectance (ρ) and transmittance (τ) were measured with a Li-220 

Cor 1800-12 integrating sphere (Li-Cor, Lincoln, NE, USA) coupled to a fiber optic 221 

spectrometer (Ocean Optics model USB2000 spectrometer, Ocean Optics, Dunedin, FL, 222 

USA), with a 1024-element detector array, 0.5 nm sampling interval, and 7.5 nm spectral 223 

resolution in the 340–940 nm range using the method described in Zarco-Tejada et al. (2005).  224 

 225 

Table 1. 226 

Ground truth data collected and optical measurements. 227 

Variable Symbol Units 

Biochemical constituents & physiological variables 

  
Chlorophyll content  Ca+b μg/cm

2
 

Carotenoid content Cx+c μg/cm
2
 

Water content  Cw mg/cm
2
 

Dry matter  Cm mg/cm
2
 

Xanthophyll cycle DEPS arbitrary units 

Steady State Fluorescence  Fs arbitrary units 

Water potential ψ mpa 

Optical measurements 

  Leaf reflectance ρ % 

Leaf transmittance τ % 

Solar irradiance Io wm
-2

sr
-1

nm
-1

 

Forest canopy structure 

  Density D trees/ha 

Trunck diameter Øt m 

Tree height H m 

Crown diameter  Øc m 

Crown heigtht Hc m 

Leaf Area Index LAI m
2
/m

2
 

 228 

 229 

In February 2013, the study area was inventoried recording the main structural variables of 230 

the canopy. A total of 200 trees were measured recoding the trunk diameter at 1.3 m, tree 231 

height, crown diameter, tree density, FC and height. Additionally, LAI values were taken 232 
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from a subsample of 15 trees of this data set. A detailed description of the measurement 233 

procedure can be found in Hernandez-Clemente et al. (2014). 234 

2.2. Airborne image acquisitions 235 

The airborne campaign was conducted with a hyperspectral sensor installed on an aircraft 236 

(CESSNA C172S EC-JYN) operated by the Laboratory for Research Methods in Quantitative 237 

Remote Sensing (QuantaLab), Consejo Superior de Investigaciones Científicas (IAS-CSIC, 238 

Spain) at 650-700 m above ground level (AGL) and 2800 ft. above the sea level (ASL). The 239 

images were acquired concurrent with field data acquisitions on 28 August 2012 between 240 

11:30 and 13:00, local time. 241 

The images were collected with a visible and near-infrared (VNIR) micro-hyperspectral 242 

imager (Micro-Hyperspec VNIR model, Headwall Photonics, MA, USA). The sensor was 243 

configured in the spectral mode of 260 bands at 1.85 nm/pixel and 12-bit radiometric 244 

resolution and radiometrically calibrated as described in Zarco-Tejada et al. (2013c). The 245 

hyperspectral sensor flown on board a manned platform yielding a 6.4 nm full-width at half-246 

maximum (FWHM) with a 25-micron slit in the 400–885 nm region and 60 cm pixel size 247 

(Fig. 1). Data acquisition and storage module achieved a 50 fps (frames per second) with 18-248 

ms integration time. The 8-mm optical focal length lens yielded an instantaneous field of 249 

view (IFOV) of 0.93 mrad and an angular field of view (FOV) of 49.82°. Radiance values 250 

were converted to reflectance using total incoming irradiance measured at the time of image 251 

acquisition. Field measurements were taken with an ASD Field Spectrometer (FieldSpec 252 

Handheld Pro, ASD Inc, CO, USA) with a cosine corrector-diffuser probe for the 350-1050 253 

nm spectral range at lower resolution (3 nm FWHM). The ASD Field Spectrometer was first 254 

calibrated using a Spectralon (SRT-99-180, Labsphere, NH, USA) white panel. ASD 255 

measurements were resampled to 6.5 nm by Gaussian convolution to match the irradiance 256 
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spectra to the spectral resolution of the radiance imagery acquired by the hyperspectral 257 

airborne sensor. 258 

The high resolution hyperspectral imagery (Fig. 1a) acquired over the oak forest (Fig. 1b) 259 

enabled the identification of different scene components (Fig. 1c) for field validation 260 

purposes. The fluorescence signal was quantified using the 760-nm O2-A in-filling method 261 

based on the Fraunhofer line depth (FLD) calculated from a total of three bands (FLD3): 262 

 263 

  
                

        
    (1) 264 

 265 

where radiance, L, corresponds to Lin (L761), Lout (average of L747 and L780 bands), and the 266 

irradiance, E, to Ein (E761), and Eout (average of E747 and E780 bands).  267 

Other vegetation indices mostly related with physiology such as the Photochemical 268 

Reflectance Index (PRI) (Gamon et al., 1992) and the Red Edge ratio index (RE) (Zarco-269 

Tejada et al., 2001) and with canopy structure such as the NDVI (Rouse et al., 1972) were 270 

also tested in this study. 271 

The hyperspectral imagery acquired enabled full crown pixels identification (Fig. 2a) and 272 

shaded and sunlit components within each crown (Fig. 2b). Thus, in order to assess the 273 

implications of scene components on the SIF signal when quantified in large pixels, FLD was 274 

quantified from three different strategies of aggregation (Fig. 2): from only sunlit pixels 275 

within each crown, all pixels from each tree crown (full crown pixels, including shaded and 276 

sunlit pixels) and from aggregated pixels at 30x30 m (including tree crown, bare soil and 277 

shadows).  278 
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 279 

Fig. 2. Example of a 30x30 m scene (highlighted squared) of the micro-hyperspectral imagery 280 

acquired at 40 cm resolution in color-infrared (a) and sunlit and shadowed component identification 281 

of the crown on the micro-hyperspectral imagery (b). Example of a 30x30 m scene (highlighted 282 

squared) simulated with FluorFLIGHT (c) and sunlit and shadowed component identification on 283 

simulated images (d). 284 

 285 

2.3. FluorFLIGHT model  286 

FluorFLIGHT is a 3-D integrated RTM to calculate reflectance and fluorescence in the 287 

observation direction as a function of canopy components. It is based on existing theory of 288 

radiative transfer by coupling the leaf fluorescence model FLUSPECT and the 3-D ray-289 

tracing model FLIGHT to account for canopy heterogeneity. The FluorFLIGHT model was 290 

specifically developed to assess the sensitivity of the fluorescence signal on heterogeneous 291 

forest canopy images.  292 

(a) (b) 

(c) (d) 
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FLUSPECT model is based on the Kubelka-Munk equation and requires a total of 7 inputs 293 

included in Table 2. Six of them are original parameters from the PROSPECT model (Feret et 294 

al., 2008; Jacquemoud and Baret, 1990), i.e., leaf structure parameter N, chlorophyll a+b 295 

(Ca+b) and carotenoid (Cc+x) content, water equivalent thickness in cm (Cw), dry matter 296 

content (Cm) and the senescence material (Cs). An additional parameter, the fluorescence 297 

quantum efficiency (Fi), from 0 (no fluorescence) to 0.1 (10% fluorescence), is required to 298 

calculate the excitation-fluorescence matrix for each photosystem (PSI and PSII). For this 299 

study, the Fi of PSI was fixed at one-fifth that of PSII, as the total spectrally integrated flux of 300 

PSII has been reported to be typically fivefold that of PSI (Franck et al., 2002). The 301 

FLUSPECT model generates two excitation-emission fluorescence matrices (EEFM) from 302 

640-850 nm at 1 nm resolution and the reflectance and transmittance spectra of a leaf from 303 

400-850 nm at 1 nm resolution. The EEFM matrices are separately generated for each 304 

photosystem for both sides of the leaf -the illuminated and the shaded side of the leaf-, 305 

backward and forward scattering matrices, respectively.  306 

The FLIGHT model is based on Monte Carlo and deterministic ray tracing techniques to 307 

simulate the observed reflectance response of 3-D vegetation canopies (North, 1996, North et 308 

al., 2010). Multiple scattering within crown boundaries and between the crowns and other 309 

canopy components is modelled to account for canopy heterogeneity. It has formed one of a 310 

set of six benchmark models for RTM evaluation under the RTM Intercomparison (RAMI) 311 

project (Widlowski et al., 2008, 2007). Structural data may be specified as a statistical 312 

distribution, derived from field measurements or by direct inversion from lidar data (Bye et 313 

al., 2017). FLIGHT calculates directional reflectance by accumulating photon energy in the 314 

observation direction as a function of different forest canopy components defining the canopy 315 

structure (crown shape and size, tree height, position, density and distribution) (Table 2). The 316 
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distribution and absorption of light intercepting the canopy was calculated with a modified 317 

version of FLIGHT including the EEFM contribution to radiance. 318 

Table 2. 319 

Nominal values and range of variation used in FluorFLIGHT simulation analysis based on field data 320 

measurements. 321 

Variable Variable code Nominal values Range 

FLUSPECT  
  

Mesophyll structure N 2.1 - 

Chlorophyll content Ca+b (μg/cm
2
) 35 10-60 

Carotenoid content Cx+c (μg/cm
2
) 12 5-20 

Water content Cw (mg/cm
2
) 0.013 - 

Dry matter Cdm (mg/cm
2
) 0.024 - 

Senescent material Cs  0 0 

Fluorescence quantum efficiency Fi 0.04 0-0.1 

FLIGHT  
  

Solar zenith, view zenith (º) θs, θv 31.3, 0.0 - 

Solar azimuth, view azimuth (º) Φs, Φv 30.44,  0.0 - 

Total LAI  3.15 0-3 

Leaf angle distribution LAD[1-9] 
0.015, 0.045, 0.074, 0.1,0.123, 

0.143, 0.158,0.168, 0.174  

Fractional cover (%) FC 70 0-100 

Crowns shape CSh ellipsoid 
 

Crown coordinates, radius, and 

centre to top distance 

Xi,Yi, Exy, Ez 

(m) 
6.0, 5.0 

 

Minimum and Maximum height to 

first branch (m)  
Hmin, Hmax 4.0, 10.0 

 

Density (trees/ha) D 60 8-400 

Soil reflectance ρλsoil ASD measurements  

Soil roughness soil 0  

Solar irradiance ρλs ASD measurements  

 322 

In addition, the canopy model requires a soil spectrum, solar irradiance (inputs from Table 2) 323 

and the six outputs obtained from the leaf model: leaf reflectance without fluorescence (ρn), 324 

leaf transmittance without fluorescence (τn), and the backward and forward fluorescence 325 

matrices for each photosystem (MbI, MbII, MfI, MfII). 326 
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Within FLIGHT, illumination at a facet such as a leaf is calculated as the sum of direct and 327 

diffuse incoming light. For a facet L with normal vector L, viewed from vector direction m 328 

and illuminated from vector direction 0, the surface-leaving radiance contribution to the 329 

detector excluding fluorescence is defined according to the equation:  330 

 331 

       m

m

LmmLL I
m

PII
1000 )(

1
)()(     (2) 332 

 333 

Where I0 is the direct solar beam illumination radiance at wavelength , and Im denotes a 334 

sample of the incoming diffuse field from direction m, and L is the bi-directional 335 

reflectance or transmittance factor for facet L. P0 has value 1 if there is a direct path to the 336 

source illumination, and 0 otherwise.  337 

The non-fluorescent scattering contribution for an individual facet L at wavelength  is 338 

approximated here using a bi-Lambertian reflectance/transmittance model: 339 

 340 

 

  

   






















0',)(

0',)(

',

1

1

LLLn

LLLn

LL
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   (3) 341 

The fluorescence contribution FL is calculated using similar equations, but using the full 342 

fluorescent scattering matrices at leaf level, sampling direct and diffuse leaf-level incident 343 

illumination within the excitation range 400-750 nm: 344 

 345 
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where 347 

gF WL,W'®W( )

=
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349 

Where Mb is the sum of backward scattering matrices for PSI and PSII contributions, and Mf 350 

for forward scattering. Total measured radiance is calculated as the sum of the reflected light 351 

and fluorescent emission terms. The full evaluation of the fluorescence scattering matrices at 352 

each photon interaction at leaf level allows inclusion of fluorescent emission in TOC spectra, 353 

accounting for 3-D structure, multiple scattering, and leaf-level light environment. 354 

Furthermore, the simulated reflectance at the canopy level accounts for crown overlapping, 355 

mutual shading, and multiple scattering among crowns. Sunlit and shadowed pixels of the 356 

crown are identified based on the scene components mask derived from the FluorFLIGHT 357 

model simulations (Fig. 2c, d). This makes it possible to understand the contribution of each 358 

component at different resolutions, particularly important for sensors acquiring data with 359 

lower spatial resolutions and therefore, with higher aggregation effects (Fig. 3). As an 360 

example, the fluorescence peak experimentally observed in canopy reflectance and simulated 361 

with FluorFLIGHT can be shown in (Fig. 3a, b). 362 

The model is originally developed at 1 nm FWHM. Nevertheless, for comparisons against the 363 

airborne hyperspectral imagery, the model simulations are convolved to 6.5 nm FWHM to 364 

match the spectral resolution of the radiance imagery acquired by the hyperspectral airborne 365 

sensor. If no convolution is carried, the FWHM of the 1 nm (model) vs 6.5 nm (image) would 366 
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derive different levels of fluorescence emission. Accounting for the bandwidth of the imagery 367 

enables the comparison between the fluorescence retrieved from the model and the one 368 

retrieved from the image at the tree crown level. 369 

 370 

Fig. 3. Example of the spectral radiance extracted from the micro-hyperspectral image (a) and from 371 

FluorFLIGHT simulated radiance (L) (b) for different scene componens: sunlit crown, full crown, 372 

sunlit soil, shadowed soil and aggregated pixels (30x30 m) in the O2-A feature used for fluorescence 373 

quantification. Spectral features extracted from Fig. 2. 374 

 375 

2.4. Model simulation approach 376 

The coupled 3-D fluorescence model FluorFLIGHT was used in this study with two primary 377 

objectives: i) the analysis of forest structure effects on SIF retrievals at high resolution scale, 378 

ii) the estimation of SIF from coarse-spatial-resolution imagery by Look-Up Table (LUT-379 

based) model inversion to account for the canopy architecture. 380 

i) Modelling forest canopy structural effects on fluorescence signal. 381 

FluorFLIGHT was used to analyse the variation of SIF as a function of forest structural 382 

components. The aim of this analysis was to assess the influence of scene components on the 383 

(a) (b) 
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retrieval of the chlorophyll fluorescence signal by identifying the key variables determining 384 

SIF variations at different scales. To do this, SIF was quantified using the 760-nm O2-A in-385 

filling method (FLD3) from FluorFLIGHT simulated data from three different strategies of 386 

aggregation (Fig. 2): from only sunlit pixels within each crown, all pixels from each tree 387 

crown and from aggregated pixels at 30x30 m (including tree crown, bare soil and shadows). 388 

This selection was based on the SIF variations found over different levels of aggregation in 389 

both, imagery and simulated spectra (Fig. 4). Fig. 4 shows the variation in SIF extracted from 390 

the original high-resolution airborne hyperspectral image (Fig. 4c) and from a FluorFLIGHT 391 

image (Fig. 4d) as a result of increasing the pixel-aggregation level from sunlit crown pixels 392 

to aggregated pixels of 100x100 m window.  393 

 394 

Fig. 4. Subplots emulating the aggregation effects due to the spatial resolution overlaid onto the 395 
micro-hyperspectral imagery acquired at 60 cm resolution (a) and a FluorFLIGHT simulated image 396 
(b), both in colour-infrared. F (FLD3) variation based on the hyperspectral image (c) and the 397 
simulated image (d) estimated from: sunlit pixels of the crown (SL crown), shadowed pixels of the 398 
crown (SW crown), full crown pixels (crown=SL+SW) and eighteen aggregated pixels from a 5x5 m 399 
window to a 100x100 m window. 400 

 401 
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FluorFLIGHT simulations were calculated for a set of leaf fluorescence quantum efficiency 402 

(Fi) values and forest structure scenarios. Leaf fluorescence signal was simulated with a 403 

varied range of Fi between 0 and 0.1. To cover the full range of canopy structural scenarios, a 404 

varied range of LAI (0-4), FC (0-100%) and density (10-200 trees/ha) were used to simulate 405 

the spectral response at the crown level (Fig. 5a) and at the aggregated canopy level (Fig. 5b). 406 

 407 

Fig. 5. Simulated canopy radiance including the effects of fluorescence using the FluorFLIGHT 408 
model for a varied range of leaf area index (LAI) (0.5-4.5) (a) and fractional cover (FC) (15-65%) (b). 409 
Fluorescence quantum yield efficiency at photosystem level (Fi=0.06). All other input parameters of 410 
the model were set using nominal values included in Table 1.  411 

 412 

ii) Fluorescence retrieval with FluorFLIGHT and hyperspectral data for detecting forest 413 

stress. 414 

The potential of using FluorFLIGHT to predict SIF from spatially aggregated pixels in a 415 

heterogeneous oak forest was analyzed. For this purpose, FluorFLIGHT was used in a multi-416 

step LUT-based inversion scheme (Fig. 6) to retrieve full crown SIF from a complex scene 417 

accounting for the influence of scene structure and composition. The estimation of vegetation 418 

fluorescence emissions was assessed from a spatial aggregation of 30x30 m, which included 419 

variations in crown coverage and shadows and sunlit proportions. The lack of complex RTMs 420 

(a) (b) 
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to simulate SIF in heterogeneous canopies (Zarco-Tejada et al., 2013b) has constrained the 421 

progress on the fluorescence interpretation in forest canopies. As shown in Fig. 6, SIF was 422 

quantified by inversion based on the FLD3 estimated from the airborne image using the LUT 423 

derived from FluorFLIGHT. As a prior step, an optimal parameter combination of N, LAI, 424 

Ca+b, and FC was iteratively retrieved. Lastly, SIF retrievals were then validated based on 425 

ground measurements of the physiological variables related with the photosynthetic activity 426 

of the vegetation such as DEPS, ψ, and Fs. 427 

 428 

Fig. 6. Overview of the processing steps followed in the retrieval of sun-induced fluorescence (SIF) 429 
showing the input variables used for the simulations. Inputs description included in Table 1. 430 

 431 

The detailed description of the inversion process shown in Fig. 6 is detailed below. 432 

Step 1. N determination by minimizing the merit function (  ): 433 

 434 
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 436 

Where      ),      ) are the leaf reflectance and transmittance at wavelength λ measured 437 

from the field, and   and    denote the modelled ones. A synthetic spectra database was 438 

simulated with FLUSPECT producing 1000 simulations with a set of N random values (1-4). 439 

Input parameters were set up to simulate the typical range of variation observed in the field 440 

Table 2. 441 

Step 2. Green FC determination by minimizing the merit function (   ): 442 

For this purpose, FluorFLIGHT was used for retrieving an optimal set of vegetation 443 

parameters (FC, LAI and Ca+b) using a LUT-based inversion scheme using aggregated pixels 444 

of 30x30 m. 445 

 446 

   
  ∑ [         )]       (7) 447 

 448 

Where     is the vegetation index used for the retrieval of each parameter calculated from 449 

measured canopy reflectance and      ) and from modelled canopy reflectance for a given 450 

set of input parameters  . FC and LAI were retrieved using the NDVI (Rouse et al., 1974); 451 

mean values of the range of possible solutions within the LUT were used since there is 452 

ambiguity between FC and LAI corresponding to a given VI value without additional 453 

constraints on allowable structure. Ca+b was retrieved using the RE (Zarco-Tejada et al., 2001) 454 

that showed robustness to shadow and structural effects in forest canopies. A synthetic 455 

spectra database was simulated with FluorFLIGHT producing 1000 simulations. Leaf input 456 
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parameters were set up to simulate the typical range of variation observed in the field 457 

(Ca+b=10-80 μg/cm
2
; Cx+c=2-18 μg/cm

2
; Cw=0.02; Cdm=0.01). Leaf level spectra were 458 

simulated using N=2.1 as derived from inversions of leaf-level optical measurements of field 459 

samples estimated above (Step 1). Leaf fluorescence signal was simulated with a varied range 460 

of Fi ranging between 0 and 0.1. The nominal inputs used at the leaf level are shown in Table 461 

2. 462 

At the canopy level, forest structure attributes such as tree height, crown diameter and LAI 463 

were randomly varied for different oak-forest cover structures to generate a range of FC 464 

between (0-100%). Table 2 shows the input parameters required by the model and the 465 

nominal variation range for the parameters used for canopy modelling with FluorFLIGHT. 466 

The spectral sampling of the simulations was initially adjusted to 1 nm covering a range for 467 

400 to 1050 nm. Then, simulated images were resampled to the spectral bandwidth of the 468 

hyperspectral airborne sensor through Gaussian convolution. The inverted values of FC, LAI 469 

and Ca+b were obtained by matching measured and modelled LUT    through (7) and finding 470 

the optimal parameter combination (Leonenko et al., 2013; Prieto-Blanco et al., 2009) and 471 

validated against FC, LAI and Ca+b field measurements. 472 

Step 3. Fluorescence inversion using the inverted FC, LAI and Ca+b as multi-constraint 473 

regularization. 474 

The simulated spectra with FluorFLIGHT were used here to retrieve SIF using the inverted 475 

values of FC, LAI and Ca+b (Step 2) as constraints in a regularization strategy attending to 476 

reduce the influence of structural canopy variables of the fluorescence signal. 477 

 478 

    
  ∑ [       )           )]     (8) 479 
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 480 

Where        )  is the FLD3 calculated from measured canopy radiance and          ) 481 

is the FLD3 calculated from modelled canopy reflectance for a given set of input 482 

parameters  . In both cases, radiance spectra were extracted from 30x30 m aggregated pixels 483 

(Fig. 6). The inverted values of crown FLD3 and leaf Fi were obtained by matching measured 484 

and modelled LUT spectra through (8) and finding the optimal values. 485 

Finally, model-based retrievals derived from hyperspectral imagery were compared to 486 

ground-truth fluorescence data. Additionally, results were also compared to other 487 

physiological variables collected on the ground. 488 

 489 

3. Results. 490 

3.1. Relationships between physiological variables and airborne F (FLD3). 491 

The capability of F (FLD) of discriminating different functional status of the vegetation was 492 

analysed and compared to other vegetation spectral indices (Table 3). The relationships 493 

between F (FLD3) quantified from full crown vegetation pixels and different physiological 494 

variables (Fs, DEPS, and ψ) were statistically significant (p < 0.01) and stronger than the 495 

relationship with other physiological vegetation indices such as PRI or RE. The weakness 496 

relationship found was between the physiological variables and the NDVI, a sensitive 497 

indicator of canopy structure.  498 

The high spatial resolution obtained by the hyperspectral imagery (60 cm resolution) enabled 499 

the identification of each scene components (Fig. 2), enabling the estimation of F (FLD3) 500 

from sunlit crowns pixels. The sunlit-crown F (FLD3) extracted was compared against 501 

(DEPS, ψ and Fs) measured at the tree-level, yielding (r
2
= 0.63; p<0.001) (Fig. 7a) between 502 
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sunlit-crown F (FLD3) and ground measured DEPS. Slightly lower relationships were found 503 

by comparing F (FLD3) and ψ (r
2
= 0.57; p<0.01) (Fig. 7b). Statistically significant 504 

relationships between sunlit-crown F (FLD3) and DEPS and ψ were consistent with the 505 

relationships obtained between leaf Fs and airborne F (FLD3) (r
2
= 0.74; p<0.001) (Fig. 7c). 506 

These results indicate that SIF retrieved from sunlit vegetation radiance of the crowns was a 507 

good indicator of physiological status of the trees within the context of this study.  508 

Table 3.  509 

Correlation coefficient R between steady-state fluorescence yield (Fs), de-epoxidation state of the 510 

xanthophyll cycle (DEPS) and water potential (ψ) and crown-based spectral vegetation indices, 511 

including structural and physiological vegetation indices. 512 

Functional-related indices Fs 
 

DEPS  ψ 
 

  
 

R R2 R R2 R R2 

Fluorescence FLD3 0.79 0.62*** -0.67 0.44** 0.71 0.5** 

Photochemical reflectance index PRI -0.45 0.2 0.65 0.42** -0.51 0.27* 

Chlorophyll -RE R750/R710 -0.24 0.06 0.13 0.02 -0.22 0.04 

Structure-NDVI NDVI -0.16 0.02 0.16 0.03 -0.18 0.03 

Non-significant P>0.05 

      Significant** P<0.01 

      Highly significant** P<0.001 

       513 

It was also observed that healthy trees (FPC1) showed higher Fs and ψ and lower DEPS while 514 

affected trees (FPC3) showed the opposite, with moderate level of affectation (FPC2) in 515 

between. These results showed that sunlit-crown F (FLD3) was also sensitive to the stress 516 

levels, tracking the physiological change forced by forest decline processes. 517 

Additionally, the F (FLD3) was calculated from spectra extracted from aggregated pixels 518 

from a 30x30 m window using as central point the location of each tree. The SIF signal 519 

retrieved from aggregated pixels was lower than that extracted from sunlit crown pixels with 520 

F (FLD3) values ranged between (1.9-4.9 and 2.5-8) Wm
-2

μm
-1

sr
-1 

respectively (Fig. 7c, d). 521 

As it is shown in Fig. 7d, the sensitivity to Fs ground-data was lower with F (FLD3) retrieved 522 

from aggregated radiance pixels, yielding a (r
2
= 0.25; statistically non-significant). These 523 
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results demonstrates the expected effect caused by the canopy architecture on SIF retrieved 524 

from mixed pixels, and therefore, the need of modelling those effects while using coarse-525 

spatial resolution images. 526 

 527 

 528 

Fig. 7. Relationship between de-epoxidation state of the xanthophyll cycle (DEPS) (a) and water 529 
potential (b) against F (FLD3) from sunlit pixel radiance L retrieved from the hyperspectral image. 530 
Relationships between steady-state fluorescence yield (Fs) ground-data measurements of 15 oak 531 
trees and airborne-based F (FLD3) retrieved from sunlit pixel radiance (c) and 30x30 m aggregated 532 
pixels radiance (L) retrieved from the hyperspectral image (d). Trees with higher and lower level of 533 
affectation are highlighted within a dashed grey and black line respectively.  534 

 535 

3.2. Modelling forest structural effects on SIF at the canopy level. 536 

(a) (b) 

(c) (d) 

Healthy 

Healthy 

Affected 

Healthy 

Affected 

Affected 

Healthy 

Affected 
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The sensitivity of the fluorescence signal to the variation in canopy structural components 537 

based on the relationships between crown SIF and SIF from 30x30 m aggregated pixels is 538 

presented in Fig. 8. F (FLD3) was retrieved for a range of LAI, tree density and percentage of 539 

FC values showing the influence of scene components on fluorescence signal from full 540 

crowns (Fig. 8a) and aggregated pixels (Fig. 8b). 541 

Fig. 8. Effects of forest structural variables on simulated canopy fluorescence (FLD3) as a function of 542 
LAI (0-5) at the crown level (a) and fractional cover FC (10-90%) at the canopy level (b). All other 543 
input parameters of the model were set using nominal values included in Table 1. 544 

 545 

The sensitivity of SIF to variations in forest canopy structure is higher at lower values of LAI 546 

and FC, especially with aggregated pixels (Fig. 8b). According to these results, SIF signal 547 

variations at the crown and canopy level can only be directly linked to variations in 548 

photosynthetic activity when structural parameters remain constant (Fig. 8). Only in this case, 549 

F (FLD3) increased as the Fi input parameters increased. 550 

Additionally, FluorFLIGHT simulations were used to develop relationships between sunlit 551 

crown pixels, crown pixels and aggregated pixels as a function of FC and LAI. As shown in 552 

Fig. 9, LAI and FC were varied to generate a range between 1-4 and 10-100%, respectively.  553 

(a) (b) 

(a) (b) 

(a) (b) 
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 554 

Fig. 9. Relationships between FluorFLIGHT simulations of canopy L obtained from sunlit crown 555 
pixels and full crowns as a function of LAI (1-4) (a). Relationships between FluorFLIGHT 556 
simulations of crown L obtained from sunlit crowns and aggregated pixels as a function of FC (10-557 
90%) (b). 558 

 559 

The simulated SIF was calculated using the FLD method for the spectral radiance extracted 560 

from sunlit crowns and then compared to different components of the scene such as full 561 

crown (Fig. 9a) and aggregated pixels of the scene (Fig. 9b). Modelling results show that the 562 

SIF signal retrieved from exposed crown and full crown pixels is higher than for aggregated 563 

pixels. The differences are even significant between the SIF signal retrieved from sunlit 564 

pixels and full crown pixels (Fig. 9a) with slightly higher values for exposed crowns. The 565 

results of quantifying SIF from 30x30 m aggregated pixels as a function of LAI (Fig.9a) and 566 

FC (Fig. 9b) show the large effects of both parameters of the fluorescence quantification. The 567 

contribution of a small percentage of sparse grass component on the soil reflectance 568 

measured from ground measurements hindered F (FLD3) to reach values slightly above zero. 569 

Additionally, (Fig. 10) shows the impact on SIF retrieval through the FLD3 method when it 570 

is retrieved from different levels of aggregation (sunlit crown pixels, full crown pixels and 571 

aggregated pixels) for a varied range of Fi, LAI and FC. Comparing the results obtained for 572 
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the different levels of aggregation, changes in aggregated pixels caused highest uncertainties 573 

in retrieved F (FLD3), followed by full crown pixels and shaded pixels. In contrast, LAI 574 

variations exerted a small variation in F (FLD3) retrieved from sunlit pixels. The SIF signal 575 

retrieved from sunlit crowns ranged between 0 and 8 Wm
-2

μm-1sr
-1

, decreasing the maximum 576 

range with the level of aggregation to 5.2, 3.6 and 1 Wm
-2

μm
-1

sr
-1

 for full crown, aggregated 577 

pixels and shaded crowns, respectively. Moreover, the SIF signal retrieved from aggregated 578 

pixels was less sensitive to Fi variation than the SIF signal retrieved from sunlit pixels. SIF 579 

signal in shaded crown pixels had minimal sensitivity to Fi variations. 580 

 581 

Fig. 10. Comparison of FluorFLIGHT model-based fluorescence quantum efficiency (Fi) and F 582 
(FLD3) retrieved from shaded and sunlit crown pixels, full crown pixels and aggregated pixels as a 583 
function of LAI (0-4) and FC (0-100%).   584 

 585 

FluorFLIGHT model simulations obtained using a random synthetic data set of values within 586 

the typical range of variation observed in the field (Table 2) are shown in Fig. 11. F (FLD3) 587 
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calculated from aggregated radiance pixels was weakly related to Fi due to the large 588 

variability in FC percentages and LAI within simulations (Fig. 11a). A cross-comparison of 589 

simulation results generated from different levels of aggregation shows that the retrieval of 590 

fluorescence improved using fluorescence radiance data from full crown pixels (r
2
=0.75; 591 

p<0.001) and improving even more when sunlit crown pixels were used to calculate SIF 592 

(r
2
=0.91; p<0.001) (Fig. 11b, c). This result was caused by the increase of the effects of 593 

vegetation structure and percentages of soil and shadows in aggregated pixels. The SIF signal 594 

retrieved from sunlit crown pixels is less affected by such effects, increasing its sensitivity to 595 

leaf fluorescence quantum efficiency.  596 

 597 

Fig 11. Relationships between the simulated FluorFLIGHT fluorescence quantum efficiency retrieved 598 
(FLD3 method) from synthetic spectra retrieved from 30x30 m aggregated pixels (a), full crown 599 
pixels (b) and sunlit crown pixels at 6.5 nm (c) and at 1 nm (d). LAI (0-4) and FC (40-60%). All other 600 
input parameters of the model were set using nominal values included in Table 1.  601 

(a) (b) 

(d) (c) 
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The sensitivity of SIF signal retrieved from sunlit crowns was further analysed to determine 602 

the impact of using FWHM spectral resolution lower than 1 nm. FluorFLIGHT simulations in 603 

Fig. 11c, d show the results of estimating SIF signal with FLD3 in-filling method against the 604 

fluorescence simulated at 1 nm resolution and 6.5 nm resolution (as a proxy of the spectral 605 

resolution of the micro-hyperspectral imager used in this study). SIF signal retrieved at 6.5 606 

nm and 1 nm had relatively similar accuracies, yielding r
2
=0.90 (for 6.5 nm data) and r

2
=0.97 607 

(for 1 nm data).  608 

Therefore, the forest structure and composition were shown to play the major role in retrieved 609 

SIF due to the confounding effects caused on aggregated pixels, with much less effect caused 610 

by the spectral bandwidth. 611 

 612 

 613 

Fig. 12.  (a) Sunlit and shadowed component identification of the crown on the micro-hyperspectral 614 
imagery. (b) SIF map showing different values between sunlit and shaded crown F (FLD3). 615 

(a) 

(b) 
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These modelling results demonstrate the difficulties of interpreting SIF from coarse 616 

resolution images where each aggregated pixel includes a large variety of percentages of 617 

sunlit and shaded vegetation and soil. The effect of the illumination condition of the crowns 618 

corroborates the need to separate the two crown factions as is shown with high resolution SIF 619 

maps (Fig 12). 620 

Accounting for variations in those percentages, FluorFLIGHT was then used to retrieve SIF 621 

from 30x30m aggregated pixels. The estimation of leaf Fi and crown F (FLD3) through 622 

FluorFLIGHT model inversion is shown in (Fig. 13).  623 

 624 

Fig. 13. Relationships between Fs ground-data measurements and fluorescence estimations retrievals 625 
using FluorFLIGHT applied to aggregated pixels without accounting for pixel aggregation (30x30 m 626 
aggregated pixels) and accounting for pixel aggregation (full crown pixels) with FluorFLIGHT (a) 627 
Leaf level relationship between Fs ground-data measurements and fluorescence quantum yield 628 
estimated with FluorFLIGHT (b). 629 

 630 

Fig 13a shows the relationship between Fs ground-data and the SIF signal retrieved by 631 

inversion using FluorFLIGHT through the FLD3 method from aggregated pixels (30x30 m). 632 

According to these results, pixel aggregation affected the accuracy in SIF retrieval (r
2
=0.42) 633 

when pixel aggregation was not considered. The retrieval accuracy was significantly 634 

improved when accounting for the effects of scene components and FC (r
2
=0.70). When the 635 

Fi was retrieved from FluorFLIGHT accounting for the percentage cover within each pixel, 636 

(a) (b) 
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the relationship with Fs ground-data measurements were significantly related (r
2
=0.79, Fig. 637 

13b). These results are consistent with the relationship found between Fi and the airborne-638 

based F (FLD3) retrieved from aggregated pixels and sunlit pixels (Fig 11a, c). Fig.14 shows 639 

the output maps after the inversion approach applied at the crown level. The map shows the 640 

spatial variability of fluorescence estimates within the oak forest based on the F (FLD3) and 641 

the Fi inverted from FluorFLIGHT (Fig. 14). The spatial distribution of fluorescence agrees 642 

with the spatial pattern of Phytophthora infections showing different susceptibility levels 643 

from trees nearby.  644 

 645 

Fig. 14. Fi retrieval at the crown level estimated from the 60-cm hyperspectral image using the 646 
fluorescence in-filling method F (FLD3) within the oak forest. 647 

 648 

4. Discussion. 649 

The consistent relationship between the fluorescence signal SIF retrieved from imagery and 650 

physiological variables (see Fig. 7) supports the hypothesis that SIF signal is a good indicator 651 

of the physiological status of the trees. Although similar observations have been made within 652 

other species e.g., for coastal shrubs (Naumann et al., 2008); for vineyards and orange trees 653 

(Zarco-Tejada et al., 2013a and Zarco-Tejada et al., 2016), this is the first attempt showing a 654 
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consistent relationship between SIF calculated using the FLD3 method from image pixels and 655 

physiological variables such as DEPS, Fs or Ψ across different functional forest health 656 

conditions (FPC 1, 2 and 3). In this particular case, SIF was demonstrated to be a good 657 

indicator of the susceptibility of oak species to damage associated with root pathogen on 658 

water relations. Other physiological vegetation indices such as PRI should be also further 659 

explored and potentially applied in combination with SIF. Stress-induced damage in oaks is 660 

related with an increase in Ψ (absolute values), an increase in the deposition of xanthophylls 661 

and a decline in the chlorophyll fluorescence emission (Fig. 7). These results are promising 662 

because the early detection of the decline in the physiological condition of the trees is 663 

essential to successfully control and manage threatened forests. 664 

A major benefit of using a 60-cm hyperspectral image is that it enables identification of the 665 

fluorescence signal emitted by the different components of the canopy. When comparing the 666 

relationship between the ground-based Fs against the SIF extracted from sunlit crown and 667 

30x30 m aggregated image pixels (r
2
= 0.74 and r

2
= 0.25, respectively), we observe a 668 

significant decrease in the coefficient of determination when using coarse pixel radiance. The 669 

slope of the SIF extracted from sunlit crowns is greater than for 30x30 m aggregated pixels, 670 

showing therefore a greater rate of change, probably increased by the reduced effects of the 671 

background in vegetation sunlit pixels. The sensitivity of remotely measured SIF to pixel 672 

aggregations is mainly produced by the natural variations in canopy structure and chlorophyll 673 

concentration of a heterogeneous canopy (Verrelst et al., 2016; Zarco-Tejada et al., 2013b). 674 

The variation in SIF showed changes as a function of the pixel aggregation level with the 675 

highest value yielded with aggregated pixels from the sunlit part of the crown. SIF retrieved 676 

from aggregated resolutions with a higher percentage of shadows (SW crown) and soil 677 

yielded lower values. Beyond a spatial resolution of 25x25 m, where the number of soil 678 

pixels is twice as large as the crown, the aggregation level no longer exerted any influence on 679 
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F (FLD3). F (FLD3) derived from simulated data and from the hyperspectral image show 680 

similar effects: the highest F (FLD3) values corresponded to sunlit crown pixels, and were 681 

approximately 25% higher than F (FLD3) extracted from full crown pixels (simulated 682 

images) and 32% higher (hyperspectral images). Shaded crowns dramatically reduced the 683 

simulated fluorescence, being 66% lower than F (FLD3) values from sunlit crowns. Shaded 684 

crowns had a large effect on the radiance signal derived from hyperspectral images by 685 

reducing up to 47% the F (FLD3) values as compared to the sunlit part of the crown. Both, 686 

FluorFLIGHT-based F (FLD3) and hyperspectral image-based F (FLD3) were significantly 687 

reduced with the increase in pixel aggregation level. These results demonstrate the difficulty 688 

of quantifying the fluorescence signal using aggregated pixels beyond the crown scale in 689 

heterogeneous canopies. 690 

Zarco-Tejada et al., (2013b) investigated the possibility of estimating full crown fluorescence 691 

from aggregated pixels. Such efforts addressed the effect of canopy structure of the SIF 692 

signal, raising important questions about the need to develop new models to simulate SIF 693 

from heterogeneous canopies. The main limitation of their study was the use of the coupled 694 

FluorMODleaf + FluorSAIL accounting for the geometry through FLIM, which did not take 695 

into account scene components such as crown overlapping or illumination conditions within 696 

the canopy in the simulations. The FluorFLIGHT model used in this study is a 3-D RTM that 697 

allowed the study of the effects caused by the canopy structure, including sunlit and shaded 698 

proportions of the crowns and background effects on the retrieval of fluorescence signal from 699 

mixed pixels. The experimental and modelling results demonstrated that the estimation of SIF 700 

from sunlit crown pixel radiance is a critical issue affecting the estimation accuracy as the 701 

mixture with shaded and background pixels increases.  702 

In order to provide a proper interpretation of SIF signal retrieved at global scales it is crucial 703 

to decouple the fluorescence signal produced by the photosynthetic activity and the 704 
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confounding effects produced by the canopy structure and multiple scattering (Damm et al., 705 

2014; Verrelst et al., 2015). The FluorFLIGHT simulation analysis presented here suggests 706 

that the canopy structure and composition may affect significantly the quantification of SIF 707 

from coarse resolutions at global scale. These results confirm some recent efforts done by 708 

other authors in order to provide insights into the key variables that drive SIF from vegetation 709 

canopies using RTM approaches within the SCOPE model (Verrelst et al., 2016). However, 710 

multiple scattering effects within the canopy cannot be addressed with the 1-D RTM SCOPE. 711 

Additionally, FluorFLIGHT used here also investigated the effect of scene components such 712 

as the percentage of vegetation or the illumination condition on the interpretation of 713 

fluorescence signal retrieved from forest heterogeneous canopies. The proportion of sunlit 714 

green vegetation absorbs more light and hence produce a higher SIF intensity (Genty et al., 715 

1989) which explains the higher values in SIF retrieval on sunlit crowns using the FLD3 716 

method. These results were demonstrated here through both the model simulation approach 717 

and experimental data.  718 

Another important issue that requires attention is the potential effect of the spectral resolution 719 

on the retrieval of fluorescence, which has been questioned by some authors (Damm et al., 720 

2014). To raising awareness on this issue, the spectral resolution of the hyperspectral sensor 721 

used in this study (6.5 nm) was also analysed. Both, experimental and simulation analysis 722 

demonstrated that the retrieval of fluorescence is feasible with such spectral resolution. SIF 723 

accuracy retrievals are only slightly diminished by using a spectral resolution of 6.5 nm 724 

compared with the effect produced by other factors such as forest structure and density. The 725 

expected deviation between absolute SIF values retrieved at 1 nm and with 6.5 nm FWHM 726 

(with high sampling intervals) do not likely affect the conclusions obtained in studies such as 727 

this one, which focuses in fluorescence retrievals for stress detection purposes rather than the 728 

absolute quantification of SIF values. In these studies, the variation of fluorescence in relative 729 
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terms enables the assessment of early stress related to disease severity levels and forest 730 

decline variability. 731 

Besides the intrinsic factors that modulate the SIF at the canopy level, the pixel aggregation 732 

used affects the estimated intensity. In particular, the accuracy of SIF retrieved from 733 

aggregated pixels beyond the crown level is uncertain because the pixel mixture may include 734 

the confounding effects of shaded pixels and background soil, decreasing the absorption in 735 

the O2-B band, and therefore, the overall magnitude of the F-signal. A more refined 3-D 736 

canopy model including physiological, aerodynamic and geometry variables would be needed 737 

to better analyse the physiological regulation of the fluorescence yield as a function of 738 

micrometeorological drivers. Nevertheless, the results of the present study showed a strong 739 

improvement in the retrieval of SIF at the leaf level from coarse resolution pixels based on 740 

the inversion of FluorFLIGHT accounting for structural variables (r
2
=0.70) compared to the 741 

results obtained ignoring those effects (r
2
=0.42).  742 

Therefore, these results suggest that the use of a 3-D RTM, such as FluorFLIGHT, may 743 

improve the estimation of SIF at global scales. SIF estimation at the crown level becomes 744 

particularly critical with invasive plant pathogens affecting individual trees alternately and 745 

selectively within the forest canopy. This is the case of sudden oak death disease progression 746 

at local and spatial scales (Ramage et al., 2012). Local patchiness in disease presence/severity 747 

can be clearly observed with the high local variability of the Fi inversion map estimated at the 748 

oak site. Hence, mapping fluorescence emission based on FluorFLIGHT model inversion 749 

approaches sets a new standard in the early detection of stress effects towards precision 750 

forestry. The early detection of hotspot locations (focus of infection or decline) might help to 751 

combat forest decline processes, and in case of Phytophthora infections, prevent the spread of 752 

the infection. 753 
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These results are of particular interest for the FLEX mission, approved as ESA's Earth 754 

Explorer 8 (Drusch et al., 2016), which will with provide fluorescence emission at finer 755 

spatial scale than currently possible, and potential to resolve full fluorescence emission 756 

spectrum with further information on stress attribution (Ač et al., 2015; Cogliati et al., 2015). 757 

There are still many challenges for measurement of SIF from space; further validation studies 758 

need to be undertaken to assess modelling results and the effect of environmental stress 759 

factors on ecophysiological traits and forest productivity. Another important issue that 760 

requires attention is the potential application of these methods to different forest types 761 

increasingly complex in terms of structure and tree species composition. The canopy 762 

structure and spatial heterogeneity of the open-and-sparse oak woodland studied here may 763 

have a different effect on global SIF estimates to other types of land covers: with higher 764 

canopy density (closed forest canopies), with higher heterogeneity in species and/or soil 765 

composition or higher vertical heterogeneity within forest canopies. 766 

It is important to highlight the difficulties of validating the estimation of SIF from spaceborne 767 

sensors over forest canopies, which encompass challenging experimental field campaigns and 768 

sampling conditions. The use of very high resolution airborne hyperspectral imagery as used 769 

in this and similar studies may be valuable. More studies supporting the validation of SIF are 770 

foreseen to improve our understanding in the link between SIF and photosynthetic activity 771 

with a greater degree of confidence. SIF retrievals using FluorFLIGHT should be further 772 

validated for different types of canopies and physiological conditions for monitoring forest 773 

decline processes.  774 

 775 

5. Conclusions. 776 
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Measuring SIF remotely is potentially a valuable tool to track the health and productivity of 777 

forest but also brings important challenges. This study gives the first 3-D model of canopy 778 

fluorescence, combined with an original field campaign aimed at quantifying the link 779 

between canopy physiology and detection at scales suitable for satellite remote sensing. The 780 

results show a link between physiologically based indicators and SIF retrieval from 781 

hyperspectral remote sensing for an oak forest affected by root pathogen infections and water 782 

stress.  783 

Model estimations against in-situ measurements conducted over the oak forest demonstrated 784 

significant utility of SIF for precision physiological condition characterization. The 785 

FluorFLIGHT model enabled the estimation of sunlit vegetation fluorescence from coarse 786 

pixels (r
2
=0.79, p<0.01) accounting for the large effects produced by the FC and canopy 787 

structure. The model inversion approach at three steps, which progressively approximates the 788 

observed canopy structure heterogeneity from the study sites, showed improvements in the 789 

estimation of leaf-based fluorescence measurement. 790 

The results presented in this study demonstrated the fluorescence signal retrieved from mixed 791 

pixels is significantly affected by the effects caused by the illumination condition and the 792 

structural component of the canopy (r
2
=0.42). Those effects are intrinsic to all radiance 793 

spectral retrieved from aggregated pixels irrespective of the sample size, but get increasingly 794 

critical with increasing levels of aggregation (pixel size). In particular, the SIF signal was 795 

significantly lower when retrieved from coarse pixels (lower than 10x10 m resolution) than 796 

from sunlit pixel crowns (<50%). Fluorescence retrieval using FluorFLIGHT and accounting 797 

for pixel aggregation minimized the impact of the canopy structure and other scene 798 

components improving the accuracy of the estimations (r
2
=0.70). 799 

 800 
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List of Figure captions 1007 

Fig. 1. Airborne hyperspectral flight line acquired with the micro-hyperspectral imager 1008 

yielding 60 cm resolution (a), oak forest study site and tree crowns selected for the 1009 

quantification of SIF (b), high resolution spectral reflectance extracted from sunlit and 1010 

shadowed crown and soil components (c).   1011 

Fig. 2. Example of a 30x30 m scene (highlighted squared) of the micro-hyperspectral 1012 

imagery acquired at 40 cm resolution in color-infrared (a) and sunlit and shadowed 1013 

component identification of the crown on the micro-hyperspectral imagery (b). Example of a 1014 

30x30 m scene (highlighted squared) simulated with FluorFLIGHT (c) and sunlit and 1015 

shadowed component identification on simulated images (d). 1016 

Fig. 3. Example of the spectral radiance extracted from the micro-hyperspectral image (a) 1017 

and from FluorFLIGHT simulated radiance (L) (b) for different scene componens: sunlit 1018 

crown, full crown, sunlit soil, shadowed soil and aggregated pixels (30x30 m) in the O2-A 1019 

feature used for fluorescence quantification. Spectral features extracted from Fig. 2. 1020 

Fig. 4. Subplots emulating the aggregation effects due to the spatial resolution overlaid onto 1021 

the micro-hyperspectral imagery acquired at 60 cm resolution (a) and a FluorFLIGHT 1022 

simulated image (b), both in colour-infrared. F (FLD3) variation based on the hyperspectral 1023 

image (c) and the simulated image (d) estimated from: sunlit pixels of the crown (SL crown), 1024 

shadowed pixels of the crown (SW crown), full crown pixels (crown=SL+SW) and eighteen 1025 

aggregated pixels from a 5x5 m window to a 100x100 m window. 1026 

Fig. 5. Simulated canopy radiance including the effects of fluorescence using the 1027 

FluorFLIGHT model for a varied range of leaf area index (LAI) (0.5-4.5) (a) and fractional 1028 

cover (FC) (15-65%) (b). Fluorescence quantum yield efficiency at photosystem level 1029 
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(Fi=0.06). All other input parameters of the model were set using nominal values included in 1030 

Table 1. 1031 

Fig. 6. Overview of the processing steps followed in the retrieval of sun-induced fluorescence 1032 

(SIF) showing the input variables used for the simulations. Inputs description included in 1033 

Table 1. 1034 

Fig. 7. Relationship between de-epoxidation state of the xanthophyll cycle (DEPS) (a) and 1035 

water potential (b) against F (FLD3) from sunlit pixel radiance L retrieved from the 1036 

hyperspectral image. Relationships between steady-state fluorescence yield (Fs) ground-data 1037 

measurements of 15 oak trees and airborne-based F (FLD3) retrieved from sunlit pixel 1038 

radiance (c) and 30x30 m aggregated pixels radiance (L) retrieved from the hyperspectral 1039 

image (d). Trees with higher and lower level of affectation are highlighted within a dashed 1040 

grey and black line respectively. 1041 

Fig. 8. Effects of forest structural variables on simulated canopy fluorescence (FLD3) as a 1042 

function of LAI (0-5) at the crown level (a) and fractional cover FC (10-90%) at the canopy 1043 

level (b). All other input parameters of the model were set using nominal values included in 1044 

Table 1. 1045 

Fig. 9. Relationships between FluorFLIGHT simulations of canopy L obtained from sunlit 1046 

crown pixels and full crowns as a function of LAI (1-4) (a). Relationships between 1047 

FluorFLIGHT simulations of crown L obtained from sunlit crowns and aggregated pixels as a 1048 

function of FC (10-90%) (b). 1049 

Fig. 10. Comparison of FluorFLIGHT model-based fluorescence quantum efficiency (Fi) and 1050 

F (FLD3) retrieved from shaded and sunlit crown pixels, full crown pixels and aggregated 1051 

pixels as a function of LAI (0-4) and FC (0-100%).   1052 
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Fig 11. Relationships between the simulated FluorFLIGHT fluorescence quantum efficiency 1053 

retrieved (FLD3 method) from synthetic spectra retrieved from 30x30 m aggregated pixels 1054 

(a), full crown pixels (b) and sunlit crown pixels at 6.5 nm (c) and at 1 nm (d). LAI (0-4) and 1055 

FC (40-60%). All other input parameters of the model were set using nominal values 1056 

included in Table 1.  1057 

Fig. 12.  (a) Sunlit and shadowed component identification of the crown on the micro-1058 

hyperspectral imagery. (b) SIF map showing different values between sunlit and shaded 1059 

crown F (FLD3). 1060 

Fig. 13. Relationships between Fs ground-data measurements and fluorescence estimations 1061 

retrievals using FluorFLIGHT applied to aggregated pixels without accounting for pixel 1062 

aggregation (30x30 m aggregated pixels) and accounting for pixel aggregation (full crown 1063 

pixels) with FluorFLIGHT (a) Leaf level relationship between Fs ground-data measurements 1064 

and fluorescence quantum yield estimated with FluorFLIGHT (b). 1065 

Fig. 14. Fi retrieval at the crown level estimated from the 60-cm hyperspectral image using 1066 

the fluorescence in-filling method F (FLD3) within the oak forest. 1067 

Table 1. Ground truth data collected and optical measurements. 1068 

Table 2. Nominal values and range of variation used in FluorFLIGHT simulation analysis 1069 

based on field data measurements. 1070 

Table 3. Correlation coefficient R between steady-state fluorescence yield (Fs), de-1071 

epoxidation state of the xanthophyll cycle (DEPS) and water potential (ψ) and crown-based 1072 

spectral vegetation indices, including structural and physiological vegetation indices. 1073 
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