766 research outputs found

    A search-based approach for automatic test generation from extended finite state machine (EFSM)

    Get PDF
    The extended finite state machine is a powerful model that can capture almost all the aspects of a system. However, testing from an EFSM is yet a challenging task due to two main problems: path feasibility and path test data generation. Although optimization algorithms are efficient, their applications to EFSM testing have received very little attention. The aim of this paper is to develop a novel approach that utilizes optimization algorithms to test from EFSM models

    A testability transformation approach for state-based programs

    Get PDF
    Search based testing approaches are efficient in test data generation; however they are likely to perform poorly when applied to programs with state variables. The problem arises when the target function includes guards that reference some of the program state variables whose values depend on previous function calls. Thus, merely considering the target function to derive test data is not sufficient. This paper introduces a testability transformation approach based on the analysis of control and data flow dependencies to bypass the state variable problem. It achieves this by eliminating state variables from guards and/ or determining which functions to call in order to satisfy guards with state variables. A number of experiments demonstrate the value of the proposed approach

    Generating feasible transition paths for testing from an extended finite state machine (EFSM)

    Get PDF
    The problem of testing from an extended finite state machine (EFSM) can be expressed in terms of finding suitable paths through the EFSM and then deriving test data to follow the paths. A chosen path may be infeasible and so it is desirable to have methods that can direct the search for appropriate paths through the EFSM towards those that are likely to be feasible. However, generating feasible transition paths (FTPs) for model based testing is a challenging task and is an open research problem. This paper introduces a novel fitness metric that analyzes data flow dependence among the actions and conditions of the transitions in order to estimate the feasibility of a transition path. The proposed fitness metric is evaluated by being used in a genetic algorithm to guide the search for FTPs

    The central bank cost constraint and output-inflation variability: a note on Cecchetti and Ehrmann 2000

    Get PDF
    The goal of this paper is to extend the model of Cecchetti and Ehrmann 2000 to study the case of developing countries that have a constraint in conducting their monetary policies. Contrary to Cecchetti and Ehrmann 2000 model, our model shows that the existence of such a constraint i.e. cost restriction allows the aggregate demand shock to affect the output-inflation variability. Our model also shows that adding a monetary policy cost restriction to the central bank loss function leads to either a steeper or flatter efficient frontier. This implies that the effect of monetary policy to offset aggregate demand and supply shocks is reduced.Central bank losses

    Search-based software engineering: A search-based approach for testing from extended finite state machine (EFSM) models

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The extended finite state machine (EFSM) is a powerful modelling approach that has been applied to represent a wide range of systems. Despite its popularity, testing from an EFSM is a substantial problem for two main reasons: path feasibility and path test case generation. The path feasibility problem concerns generating transition paths through an EFSM that are feasible and satisfy a given test criterion. In an EFSM, guards and assignments in a path‟s transitions may cause some selected paths to be infeasible. The problem of path test case generation is to find a sequence of inputs that can exercise the transitions in a given feasible path. However, the transitions‟ guards and assignments in a given path can impose difficulties when producing such data making the range of acceptable inputs narrowed down to a possibly tiny range. While search-based approaches have proven efficient in automating aspects of testing, these have received little attention when testing from EFSMs. This thesis proposes an integrated search-based approach to automatically test from an EFSM. The proposed approach generates paths through an EFSM that are potentially feasible and satisfy a test criterion. Then, it generates test cases that can exercise the generated feasible paths. The approach is evaluated by being used to test from five EFSM cases studies. The achieved experimental results demonstrate the value of the proposed approach.Aleppo University, Syri

    Electrochemical Behavior of Polycrystalline Copper in Aqueous Phosphate Buffered Solution During CO2 Reduction.

    Get PDF
    The redox processes occurring on the copper surface in phosphate buffered solution were investigated. The results show that the oxidation and the reduction of copper surface occur in a slow process with hydrogen evolution region proceeding at potential more negative than -1.0 V. It is found that the hydrogen evolution region was not affected by the anodic potential limits. The anodic film forms on the copper surface are reduced possibly in quasireversible manner. In CO2-saturated solution, the loss of copper to the solution increases due to the formation of copper soluble species. This process is further enhanced with the polarization process, where copper(I)-carbonyl forms to the bulk solution. The results also show that the electrochemical behavior of copper electrode is dramatically changed by the polarization process. The hydrogen evolution region is greatly depressed due to the CO2 reduction process. Consequently, the reduction of CO2 is not pronounced on the copper surface except for the electrode surface has which been polarized at high cathodic potential for a period of time

    学会抄録

    Get PDF
    The aim of this study was to understand the acclimatization mechanisms of photosynthetic apparatus in Brachypodium pinnatum (L.) P. Beauv grass during its expansion. Twelve populations differentiated by age: young (30-50 years old), intermediate age (ca. 100 y) and old (>300 y) were studied. It was confirmed that the decrease of the number of genotypes as a result of environmental stress and competition were reflected in changes in chlorophyll fluorescence (ChlF) parameters. The old stands were dominated by a few genotypes which seem to be the best acclimatized to the self-shading/competition by lowering their photosynthetic performance during light-phase of photosynthesis. On the other hand, the 'high-speed' photosynthetic rate observed in the young populations can be seen as acclimatization to very adverse conditions. Our results clearly confirm that ChlF is a powerful method of inferring physiological mechanisms of the expansion of tor grass. The Principal Component and Redundancy Analyses, followed with k-means classification, allowed to find the differentiation of groups of distinct ChlF parameters and enabled us to relate them to changes in genotypic diversity of populations. We conclude that the plastic morphological and physiological response to changeable habitat light conditions with its optimum in half-shade refers to its forest-steppe origin
    corecore