1,864 research outputs found

    Ensemble clustering via heuristic optimisation

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel UniversityTraditional clustering algorithms have different criteria and biases, and there is no single algorithm that can be the best solution for a wide range of data sets. This problem often presents a significant obstacle to analysts in revealing meaningful information buried among the huge amount of data. Ensemble Clustering has been proposed as a way to avoid the biases and improve the accuracy of clustering. The difficulty in developing Ensemble Clustering methods is to combine external information (provided by input clusterings) with internal information (i.e. characteristics of given data) effectively to improve the accuracy of clustering. The work presented in this thesis focuses on enhancing the clustering accuracy of Ensemble Clustering by employing heuristic optimisation techniques to achieve a robust combination of relevant information during the consensus clustering stage. Two novel heuristic optimisation-based Ensemble Clustering methods, Multi-Optimisation Consensus Clustering (MOCC) and K-Ants Consensus Clustering (KACC), are developed and introduced in this thesis. These methods utilise two heuristic optimisation algorithms (Simulated Annealing and Ant Colony Optimisation) for their Ensemble Clustering frameworks, and have been proved to outperform other methods in the area. The extensive experimental results, together with a detailed analysis, will be presented in this thesis

    Gene prioritization and clustering by multi-view text mining

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Text mining has become a useful tool for biologists trying to understand the genetics of diseases. In particular, it can help identify the most interesting candidate genes for a disease for further experimental analysis. Many text mining approaches have been introduced, but the effect of disease-gene identification varies in different text mining models. Thus, the idea of incorporating more text mining models may be beneficial to obtain more refined and accurate knowledge. However, how to effectively combine these models still remains a challenging question in machine learning. In particular, it is a non-trivial issue to guarantee that the integrated model performs better than the best individual model.</p> <p>Results</p> <p>We present a multi-view approach to retrieve biomedical knowledge using different controlled vocabularies. These controlled vocabularies are selected on the basis of nine well-known bio-ontologies and are applied to index the vast amounts of gene-based free-text information available in the MEDLINE repository. The text mining result specified by a vocabulary is considered as a view and the obtained multiple views are integrated by multi-source learning algorithms. We investigate the effect of integration in two fundamental computational disease gene identification tasks: gene prioritization and gene clustering. The performance of the proposed approach is systematically evaluated and compared on real benchmark data sets. In both tasks, the multi-view approach demonstrates significantly better performance than other comparing methods.</p> <p>Conclusions</p> <p>In practical research, the relevance of specific vocabulary pertaining to the task is usually unknown. In such case, multi-view text mining is a superior and promising strategy for text-based disease gene identification.</p

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    A Bibliographic View on Constrained Clustering

    Full text link
    A keyword search on constrained clustering on Web-of-Science returned just under 3,000 documents. We ran automatic analyses of those, and compiled our own bibliography of 183 papers which we analysed in more detail based on their topic and experimental study, if any. This paper presents general trends of the area and its sub-topics by Pareto analysis, using citation count and year of publication. We list available software and analyse the experimental sections of our reference collection. We found a notable lack of large comparison experiments. Among the topics we reviewed, applications studies were most abundant recently, alongside deep learning, active learning and ensemble learning.Comment: 18 pages, 11 figures, 177 reference

    A brief history of learning classifier systems: from CS-1 to XCS and its variants

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. The direction set by Wilson’s XCS is that modern Learning Classifier Systems can be characterized by their use of rule accuracy as the utility metric for the search algorithm(s) discovering useful rules. Such searching typically takes place within the restricted space of co-active rules for efficiency. This paper gives an overview of the evolution of Learning Classifier Systems up to XCS, and then of some of the subsequent developments of Wilson’s algorithm to different types of learning

    Explainable clinical decision support system: opening black-box meta-learner algorithm expert's based

    Get PDF
    Mathematical optimization methods are the basic mathematical tools of all artificial intelligence theory. In the field of machine learning and deep learning the examples with which algorithms learn (training data) are used by sophisticated cost functions which can have solutions in closed form or through approximations. The interpretability of the models used and the relative transparency, opposed to the opacity of the black-boxes, is related to how the algorithm learns and this occurs through the optimization and minimization of the errors that the machine makes in the learning process. In particular in the present work is introduced a new method for the determination of the weights in an ensemble model, supervised and unsupervised, based on the well known Analytic Hierarchy Process method (AHP). This method is based on the concept that behind the choice of different and possible algorithms to be used in a machine learning problem, there is an expert who controls the decisionmaking process. The expert assigns a complexity score to each algorithm (based on the concept of complexity-interpretability trade-off) through which the weight with which each model contributes to the training and prediction phase is determined. In addition, different methods are presented to evaluate the performance of these algorithms and explain how each feature in the model contributes to the prediction of the outputs. The interpretability techniques used in machine learning are also combined with the method introduced based on AHP in the context of clinical decision support systems in order to make the algorithms (black-box) and the results interpretable and explainable, so that clinical-decision-makers can take controlled decisions together with the concept of "right to explanation" introduced by the legislator, because the decision-makers have a civil and legal responsibility of their choices in the clinical field based on systems that make use of artificial intelligence. No less, the central point is the interaction between the expert who controls the algorithm construction process and the domain expert, in this case the clinical one. Three applications on real data are implemented with the methods known in the literature and with those proposed in this work: one application concerns cervical cancer, another the problem related to diabetes and the last one focuses on a specific pathology developed by HIV-infected individuals. All applications are supported by plots, tables and explanations of the results, implemented through Python libraries. The main case study of this thesis regarding HIV-infected individuals concerns an unsupervised ensemble-type problem, in which a series of clustering algorithms are used on a set of features and which in turn produce an output used again as a set of meta-features to provide a set of labels for each given cluster. The meta-features and labels obtained by choosing the best algorithm are used to train a Logistic regression meta-learner, which in turn is used through some explainability methods to provide the value of the contribution that each algorithm has had in the training phase. The use of Logistic regression as a meta-learner classifier is motivated by the fact that it provides appreciable results and also because of the easy explainability of the estimated coefficients
    corecore