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Abstract  

 

The direction set by Wilson’s XCS is that modern Learning Classifier Systems can be characterized by 

their use of rule accuracy as the utility metric for the search algorithm(s) discovering useful rules. Such 

searching typically takes place within the restricted space of co-active rules for efficiency. This paper 

gives an overview of the evolution of Learning Classifier Systems up to XCS, and then of some of the 

subsequent developments of Wilson’s algorithm to different types of learning. 
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1. Introduction 

Learning Classifier Systems (LCS) are rule-based systems, where the rules are usually in the traditional 

production system form of “IF condition THEN action”. An evolutionary algorithm and/or other heuristics are 

used to search the space of possible rules, whilst another learning process is used to assign utility to existing 

rules, thereby guiding the search for better rules. The LCS formalism was introduced by John Holland [1976] 

and based around his better known invention – the Genetic Algorithm (GA)[Holland, 1975]. A few years later, 

in collaboration with Judith Reitman, he presented the first implementation of an LCS, termed “Cognitive 

System Level 1” (CS-1) [Holland & Reitman, 1978]. Holland then revised the framework to define what would 

become the standard system for many years [Holland, 1980]. However, Holland’s full system was somewhat 

complex and practical experience found it difficult to realize the envisaged behaviour/performance, despite 

numerous modifications (e.g., see [Wilson & Goldberg, 1989]), and interest waned. Some years later, Stewart 

Wilson introduced a form of LCS in which rule fitness is calculated solely by the accuracy of the predicted 

consequences of rule actions – XCS [Wilson, 1995]. The following two decades have seen a resurgence in the 

use of LCS as XCS in particular has been found able to solve a number of well-known problems optimally (e.g., 

see [Butz, 2006]). Perhaps more importantly, LCS have been applied to a number of real-world problems (e.g., 

see [Bull, 2004]), particularly data mining (e.g., see [Bull et al., 2008]), to great effect. Formal understanding of 

LCS has also increased (e.g., see [Bull & Kovacs, 2005]). The purpose of this paper is to provide some 

historical context to the area of modern accuracy-based Learning Classifier Systems before presenting some of 

the main developments since the introduction of XCS twenty years ago (see [Lanzi & Riolo, 2000][Urbanowicz 

& Moore, 2009] for a previous historical reviews). The use of evolutionary algorithms to design whole rule sets, 

i.e., so-called Pittsburgh-style LCS [Smith, 1980], is not considered here. 

2. The Evolution of LCS 

Holland developed the LCS formalism as an approach to reinforcement learning, that is, learning through trial-

and-error. Reinforcement learning methods seek to ascertain the value of executing each possible action 

(assertion) available within each state (condition) of a given problem (see [Sutton & Barto, 1998] for an 

introduction). Within psychology, the study of trial-and-error learning can be traced back to Edward Thorndike 

and his “Law of Effect” [Thorndike, 1911], and within computer science to Alan Turing and his “P-type 

unorganised machine” [Turing, 1948]. Whilst Farley and Clark [1954] were perhaps the first to implement 



reinforcement learning within a computer, Holland was influenced by Arthur Samuel’s seminal early work on 

draughts/checkers [Samuel, 1959], which itself drew upon Claude Shannon’s work on chess, seemingly the first 

consideration of learning a value function through experience [Shannon, 1950]. Samuel [1959] described a 

scheme for adjusting temporally successive estimates of the end reward value from a sequence of moves 

(improved in [Samuel, 1967]). 

 

 

 

Figure 1: Learning Classifier Systems’ family tree. 

 

Holland’s [1976] interest was in how an artificial system may continuously adapt to novelty, significantly, 

extending previous studies by also considering how to build suitable knowledge representations thereby 

enabling flexible, continual learning through trial-and-error to maximise reward. A variant of his Genetic 

Algorithm was incorporated as an effective approach to this ability. The suggestion that a simulated 

evolutionary process may prove useful in artificial systems was first made by Turing [1948], with early 

implementations within a computer by Fraser [1957] and Box [1957] (see [Eiben & Smith, 2003] for an 

introduction). The combined reinforcement learning and evolutionary computing architecture was termed CS-1 

[Holland & Reitman, 1978]. Figure 1 shows a family tree of the LCS considered as the significant steps in the 

evolution of XCS from CS-1 to be discussed in this paper, beginning with CS-1.  



2.1 Cognitive System Level 1 

 

On each discrete time cycle, CS-1 receives a binary encoded description of the current state of its environment. 

The system determines an appropriate response based on this input, its last action, and the current contents of an 

internal memory space, termed a message list (Figure 2). The rule-base consists of a population of N condition-

assertion rules or "classifiers". The rule conditions are strings of characters from the ternary alphabet {0,1,#}. 

The # acts as a wildcard allowing generalisation such that the rule condition 1#1 matches both the input 111 and 

the input 101, for example. Rule assertions contain both an action and an internal message, both formed from 

binary strings. All rule components are initialised randomly. Also associated with each rule are a number of 

parameters, including age, frequency of use, and a prediction of the typical reward received from its use, which 

is also the fitness metric (explained later).  

 

On receipt of an input message, the rule-base is scanned and any rule whose condition matches the external 

message, the content of the message list, and the previous action becomes a member of the current "match set" 

[M]. A heuristic considering aspects such as the specificity of matching and the predicted future reward is then 

used to determine the top ten eligible rules. The system response is then chosen probabilistically from that set. 

The chosen rule’s action is executed in the environment, the message list updated, its age halved, and frequency 

increased.  

 

CS-1 uses an epochal reinforcement learning scheme such that the identification of all rules that have provided 

an action is recorded, in order, between rewards. If an external reward is received, the predicted reward of each 

rule in this set [E] is adjusted at a rate inversely proportional to their frequency parameter “to reflect their 

accuracy in anticipating this reward. Those predicted payoffs that were consistent with (not greater than) this 

reward are maintained or increased; those that overpredicted are significantly reduced” [Holland & Reitman, 

1978]. A further heuristic is applied to the predictions such that the actual value of reward used to update each 

member of [E] is “attenuated”, an adjustment based on the relative size of reward predicted by rules and by their 

successors in [E], it being incremented each time the latter is higher than the former. “This parameter is highly 

correlated with the delay between a response and the reward” [Holland & Reitman, 1978] and may be seen as an 

early form of temporal difference learning.  

 



  

 

 

Figure 2: Schematic of CS-1. 

 

After every ten rewards received, the contents of the rule-base are altered by the simulated evolutionary process 

of the GA. The implemented CS-1 could take one of two actions and so ran the evolutionary search process 

within the two sub-populations, that is, action niches. Fitness proportionate selection using the predicted reward 

of each rule as the fitness value picks two parents from the rule-base population. These are then combined using 

one-point crossover (mutation is not mentioned). One of the two offspring produced is selected at random to be 

inserted into the rule-base. Replacement uses the age of rules. “Recall that a classifier with a poor predicted 

payoff rarely wins competitions; without a win, its age increases steadily. Age therefore, reflects the classifier’s 

quality as well as its frequency of use. To make room for the new classifier therefore, one with an old age is 

deleted.” [Holland & Reitman, 1978]. Moreover, from the set of oldest rules within the niche, the one closest in 

Hamming(-like) distance is chosen; a form of crowding is used.  

 

CS-1 was shown able to solve a simple maze task with seven locations, two actions, and two types of reward, 

before being applied to an extended maze. Holland and Reitman report faster learning of the second maze using 

a system previously trained on the smaller maze, in comparison to a naïve system. Analysis of the external input 

patterns indicates minor changes in effective general rules in the smaller maze are close in rule-space to those in 

the larger, as might be expected (see [Iqbal et al., 2014] for related recent work).  



LCS aim to build an efficient representation of any underlying regularities within the given problem domain 

during learning. The inherent pressure within CS-1 to discover maximally general rules - rules which aggregate 

the most problem states together from which the same action results in the same reward - over more specific 

(less # symbols in their condition) but equally accurate predictors comes from the evolutionary deletion scheme. 

More specific rules tend not to match so often and so their age increases more rapidly than more general, but 

also accurate rules; the probability of removal of specific rules from the rule-base increases with specificity. 

Similarly, the pressure to remove over general rules – rules that aggregate too many states together such that the 

level of reward received from their use varies – comes from the reinforcement scheme and evolutionary 

selection. Over or under prediction of a reward value results in a significant reduction in the predicted reward of 

a rule, the parameter used as the fitness measure for reproduction by the GA; inaccurate rules have lower fitness 

and hence are unlikely to be selected. 

 

However, the described system struggles to maintain more than one or a very few rules within a population. 

That is, the GA tends to converge upon a single (maximally general) solution. This explains why CS-1 runs the 

GA in the two explicit action sub-population niches. In the two mazes, CS-1 always started in the middle and 

had to maintain the same action across a number of states to an end goal state where reward was given. Whether 

the system should go left or right depended upon an internal value. Hence a rule which generalised over all the 

states to the left and one which generalised over all the states to the right was the optimal solution. By running 

the GA in two niches based on actions, both were sustainable indefinitely.  

 

With this apparent limitation, Holland subsequently altered a number of aspects of CS-1 in his “standard 

system”, most notably removing the use of reward prediction accuracy and frequency of rule use. CS-1’s use of 

both in part anticipated XCS’s dependence on similar qualities. 

 

2.2 Holland’s Standard Architecture 

 

A few years later Holland [1980] revised CS-1 and described what would become the standard architecture, here 

termed “Learning Classifier System” (LCS). It should be noted that Holland seems not to have used the prefix 

“learning” at the time; Goldberg [1985] may have been first to add the emphasis. The main change from CS-1 

was to introduce a reinforcement learning scheme based upon an economic metaphor, known as the “bucket 



brigade” (after the water passing chains of fire fighters), in which rule utility is judged by the accrual of credit. 

In this way, rules acting in temporal chains leading to external reward are viewed as the middlemen of supply 

and demand chains. Rules maintain a single parameter of credit (termed strength) received. This is used both for 

action selection and in rule discovery by the GA. The message list is extended to enable multiple rules to post 

their assertions. Rule conditions no longer have a fixed structure to consider the current environmental state, the 

contents of the message list and the last action. Instead, all conditions and assertions are of the same length, with 

conditions also able to include a logical NOT. Assertions are now built from the same alphabet as conditions 

{0,1,#} such that information may “pass through” from either the condition or the string (external input or 

internal message) which the rule matches where a # exists.   

 

 

 

 

Figure 3: Schematic of Holland’s LCS. 

 

 

On each cycle, a binary external state description is placed onto the message list, the rule-base is scanned, and 

any rule whose condition matches the external message and/or the other contents of the message list becomes a 

member of [M] (Figure 3). Rules are selected from those comprising [M], through a bidding mechanism, firstly 

to become the system's external action and then to post their assertion onto the (fixed size) message list for the 

next cycle. This selection is performed by the roulette wheel scheme based on rule bids. Rules' bids consist of 



two components, their strength and the specificity (fraction of non-# bits) of their condition. Further, a constant 

(here termed , where 0<<1) is factored in, i.e., for a rule C in [M] at time t:  

 

Bid(C,t) = β.specificity(C).strength(C,t) 

 

Reinforcement consists of redistributing bids made between subsequently chosen rules. The bid of each winner 

at each time-step is placed in a "bucket". A record is kept of the winners on the previous time step and they each 

receive an equal share of the contents of the current bucket; fitness is shared amongst concurrently activated 

rules. If a reward is received from the environment then this is paid to the winning rule which produced the last 

system output. However whether all rules that have posted a message share the external reward appears to vary 

in the literature, being both included [Holland, 1985] and excluded [Holland, 1986]. “Thus, the bucket brigade 

assures that early-acting, stage-setting classifiers receive credit if they (on average) make possible later, overtly 

rewarding acts” [Holland, 1986]. The emphasis upon average ability relaxes the previous explicit focus on 

accurately predicting reward; there is an apparent reduction in the selective pressure for consistent behaviour 

which formed the basis of CS-1. With hindsight, this change was perhaps the most significant between the two 

LCS. 

 

As noted above, the periodically applied GA uses rule strength to select two parents, these are then combined 

using one-point crossover and mutated. Both offspring are inserted into the rule-base, replacing rules chosen 

inversely proportional to their strength. Since reward is shared amongst rules, the GA is in principal able to 

maintain multiple useful rules within the rule-base (discussed later). 

 

A number of other mechanisms were proposed by Holland but for the sake of clarity they are not described in 

detail here. These include the idea that hierarchical rule associations could emerge via specific rules out-bidding 

more general rules in certain important situations, and extra “tag” regions of conditions and assertions being 

added would aid the formation of sequential induction (see [Holland et al., 1986] for a full treatment). These 

ideas do not feature in modern LCS (see [Smith et al., 2010] for an exception).  

 

 

 



2.3 GOFER 

 

Booker [1982] presented a form of Holland’s standard LCS which extends the principle of using a GA to 

discover any underlying regularities in the problem space, dividing the task of learning such structure from that 

of supplying appropriate actions to receive external reward (see [Booker, 1988] for an overview]). Here a 

separate LCS exists for each of these two aspects. A first LCS receives binary encoded descriptions of the 

external environment, with the objective to learn appropriate regularities through generalizations over the 

“perception” space. This is seen as analogous to learning to represent categories of objects. The matching rules 

not only post their messages onto their own message list but some are passed as inputs to a second LCS. The 

second LCS therefore only receives reward when it correctly exploits such categorizations with respect to the 

current task. GOFER contains a number of innovations including partial matching and rule excitation levels, 

however it is the use of restricting the process of rule-discovery to concurrently active rules which has proven 

most influential (see [Booker, 1985]). Here parents are chosen from within a given [M] thereby avoiding the 

mixing of rules with generalizations which (potentially) consider markedly different aspects of the problem. 

Booker [1989] later extended the idea to trigger the GA during learning whilst also leaving it running at a 

constant rate under the reinforcement process as Holland did. In particular, rules maintain an approximation of 

their “consistency”, a measure of the variance in the reward they receive. If a given percentage of rules in [M] 

have a level of inconsistency above a threshold, the fitness of all consistent rules is increased and the GA run: “ 

… consistent classifiers are thereby made more attractive to the genetic algorithm” [ibid.]. XCS uses both a 

form of triggered niche GA and rule consistency.  

 

2.4 ANIMAT and ZCS 

 

Stewart Wilson began to develop versions of Holland’s LCS as an approach to understanding animal/human 

intelligence through the computer simulation of simple agents in progressively more complex domains - termed 

the animat approach. The first of these, ANIMAT [Wilson, 1985], makes a number of simplifications to 

Holland’s architecture. In particular, the message list is removed and matching rules are grouped by their action 

in the bucket brigade process, forming action sets [A]. The GA is also sensitive to rule actions, somewhat akin 

to CS-1: a first parent is chosen based upon its strength from the rule-base, the second is then chosen from the 

subset of the population with the same action. ANIMAT controlled a simple agent in a 2D gridworld, able to 



sense the contents of the eight locations surrounding it and able to move in each such direction if clear. Wilson 

showed learning was possible such that effective paths to food reward signals were discovered. However, he 

noted that the system had “nothing which preferentially reinforces the most expeditious classifiers” [ibid.]. To 

encourage the shortest path to reward from a given start location, rules were extended to maintain an estimate of 

the number of subsequent steps to reward from their use, updated locally based upon the estimates of successor 

rules. This was factored into action selection via dividing strength by distance. ANIMAT also includes a guided 

recombination operator, replacing dissimilar bits in parent conditions with a # to aid the formation of useful 

generalizations.  

 

 

 

 

Figure 4: Schematic of Wilson’s ZCS. 

 

 

Wilson later returned to ANIMAT, further simplifying it in his “zeroth-level” classifier system (ZCS) [Wilson, 

1994] (Figure 4). Importantly, the bucket brigade was again modified to incorporate a mechanism from temporal 

difference learning [Sutton & Barto, 1981] (see also [Dorigo & Bersini, 1994] for an early connection). Here the 

fraction of the total strength of a given [A] in the bucket is further reduced by a discount rate  (0<<1) before 

being shared equally amongst the rules of the previous action set [A]-1. Discounting allows systematic control 



over the influence of future rewards, replacing Wilson’s previous distance approximation mechanism. The 

effective update of action sets is thus (0<<1): 

 

strength([A],t+1) = strength([A],t) + [ Reward + .strength([A]+1) – strength([A],t) ] 

 

To give increased focus to the search, rules in a given [M] but not [A] have their strengths reduced by a tax; 

rules can only persist if they regularly receive (high) reward. A “create” mechanism in ANIMAT is also retained 

in ZCS, but slightly modified. Here, if an [M] is empty or if the total strength of [M] is below a given threshold, 

a new rule is created to cover the current environmental input, randomly  augmented with some #, and given a 

random action. The action niche restriction and generalization mechanisms of the GA are removed. Parental 

rules give half of their strength to their offspring under the GA which fires at a fixed rate .  

 

Results with ZCS indicated it was capable of good, but not optimal, performance [Wilson, 1994][Cliff & Ross, 

1995]. Wilson [1994] also included a version of the off-policy temporal difference learning algorithm Q-

learning [Watkins, 1989] to some benefit. He also proposed to use the triggered niche GA of GOFER on top of 

the panmictic/global scheme described above. Bull [2005] showed the potential for disruption of the reward 

sharing scheme using just a niche GA in a similar LCS but no combination is known. It has been shown that 

ZCS is capable of optimal performance in a number of well-known test problems but that it appears to be 

particularly sensitive to some of its parameters [Bull & Hurst, 2002], and it has been shown to outperform XCS 

in classes of noisy domain [Stone & Bull, 2005]. XCS maintains a number of ZCS’s basic features but makes 

significant alterations.   

 

2.5 BOOLE, NEWBOOLE and AU-BOOLE 

 

After introducing a number of modifications to Holland’s architecture in ANIMAT, but before ZCS, Wilson 

presented a specialised form designed for reinforcement learning tasks where immediate reward is given. In 

particular, his BOOLE system was designed for binary decision tasks [Wilson, 1987]. BOOLE maintains the 

[M]→[A] mechanism of ANIMAT, also removing the message list. The GA no longer restricts selection of the 

second parent to having the same action when using crossover, and reproduction causes the strength of parents 

to be reduced and donated to offspring akin to the mechanism later used in ZCS. It has been shown that reducing 



strength can create a pressure for more general rules as they update more frequently and therefore regain reward 

faster [Bull, 2005]. Again, as in the later ZCS, rules in [M] but not [A] have their strengths reduced by a tax. 

BOOLE was shown able to learn two- and three-address bit multiplexer problems (6MUX and 11MUX, 

respectively), with the effects of varying the tax rates, genetic operators and including a reward bias based upon 

the degree of generalisation in rules explored.  

 

Bonelli et al. [1990] made the significant step of presenting a form of LCS for supervised learning tasks, that is, 

tasks where the correct response is known at the point of internal updating. Extending BOOLE, they noted that 

the set of rules in [M] providing the correct response, regardless of whether they formed [A], should receive 

reward. Hence they split [M] into the correct set [C] and incorrect set Not[C] for their NEWBOOLE system. 

BOOLE’s uses of taxes and a bias in the distribution of reward based upon generality were kept. They showed 

significant improvement in learning speed compared to BOOLE and to an artificial neural network using 

backpropagation on the 6MUX and 11MUX tasks. Hartley [1999] showed NEWBOOLE to be competitive with 

XCS on a well-known set of binary classification tasks, although XCS’s maintenance of a full state-action-

reward map gave it an advantage in some forms of non-stationary task (see [Bull & Hurst, 2002] for discussion).     

 

Seemingly independently, Frey and Slate [1991] also presented a variant of BOOLE for supervised learning 

tasks in which they also update the correct set within [M] regardless of the output. Having struggled to find the 

correct balance of taxing and bid biasing for a letter recognition task, with reference to Holland’s [1976] original 

ideas, they introduced the accuracy-utility system (here termed AU-BOOLE). Here each rule maintains two 

parameters: accuracy, the ratio of correct bids to total bids made; and, utility, the ratio of correct bids when 

chosen to total number of times chosen as the output. Accuracy is used in bidding in [M] and for reproduction, 

and utility is used for deletion. Whilst performance with AU-BOOLE was found to be similar to their version of 

NEWBOOLE, they report greater ease in finding useful parameters. As will be discussed, these ideas have been 

incorporated into XCS, resulting in the “sUpervised Classifier System” (UCS) [Bernado Mansilla & Garrell, 

2003]. 

 

 

 

 



2.6 CFSC2 and ACS 

 

Holland and Reitman [1978] suggested a number of extensions to CS-1 at the end of their paper, particularly 

ways by which to learn more sophisticated cognitive maps than the stimulus-response relations they had 

achieved. “Cognitive maps allow the system to use lookahead to explore, without overt acts, the consequences 

of various courses of action.” [ibid.]. Again, following Samuel [1959], they describe a scenario of rules being 

linked over system cycles through the message list which do not cause external actions on each step. Holland 

[1990] later returned to this aspect, proposing that the aforementioned extra “tag” regions of conditions and 

assertions that can be added as arbitrary patterns would aid the formation of sequential induction of the 

necessary form: IF condition AND assertion THEN next-condition. That is, Holland did not seek to change the 

rule structure from his standard LCS to this direct form. Riolo [1991] was first to implement lookahead 

capabilities within LCS with his CFSC2. He allowed the system to execute more than one cycle before 

providing an action, added tags along the lines Holland [1990] had suggested, and introduced an extra strength 

parameter to represent the predictive accuracy of a rule. Through tags, rules are either connected to external or 

internal events, or both. Bidding is adjusted to also factor the accuracy of predicted next states of a rule (if any). 

Rule chains which accurately map features in simple mazes with or without overt reward (latent learning) are 

reported to emerge under a rule discovery process which is driven by internal and external messages rather than 

a GA. That is, when no rules match or none are chained across system cycles, various heuristics are used to form 

appropriate rules via tags. Roberts [1993] presented a related approach within ANIMAT which maintained 

“followsets”, time-stamped information regarding rewards received or next states obtained after a rule had fired. 

The value of such rewards is factored into rule strengths.  

 

Wilson [1995] proposed altering the rule structure to contain the anticipated next state, with an “expecton” in 

XCS. Stolzmann [1998] presented a system in which such a rule structure is used (the expecton component 

termed the “effect”) – the Anticipatory Classifier System (ACS). Drawing upon a learning theory from cognitive 

psychology, sub-populations of rules are learned per [A] via a specialisation heuristic (not a GA) for rules based 

upon the environmental input, both in the condition and effect components. Rule utility is represented by the 

accuracy of anticipations whilst external reward is used in bidding. A famous experiment with rats in a T-maze 

[Seward, 1949] is simulated and the results indicate similar behaviour from the ACS. A combination of ACS 



and XCS has been presented to achieve such model learning, as will be discussed (e.g., see [Butz & Goldberg, 

2003]).   

3. Wilson’s XCS 

The most significant difference between XCS (Figure 5) and all other LCS prior to its presentation is that rule 

fitness for the GA is not based on the amount of reward received by rules but purely upon the accuracy of 

predictions (p) of reward. The intention in XCS is to form a complete and accurate mapping of the problem 

space (rather than simply focusing on the higher payoff niches in the environment) through efficient 

generalizations: XCS learns a value function over the complete state-action space. On each time step a match set 

is created. A system prediction is then formed for each action in [M] according to a fitness-weighted average of 

the predictions of rules in each [A]. The system action is then selected either deterministically or randomly 

(usually 0.5 probability per trial). If [M] is empty covering is used. 

 

Fitness reinforcement in XCS consists of updating three parameters, , p and F for each appropriate rule; the 

fitness is updated according to the relative accuracy of the rule within the set in five steps: 

 

i) Each rule’s error is updated: j = j + ( | Reward - pj | - j)  

ii) Rule predictions are then updated: pj = pj + (Reward-pj) 

iii) Each rule’s accuracy j is determined: j = (0/)


orwhere                                                            


where


,andare constants controlling the shape of the accuracy function. 

iv) A relative accuracy j’ is determined for each rule by dividing its accuracy by the total of the 

accuracies in the action set. 

v) The relative accuracy is then used to adjust the classifier’s fitness Fj using the moyenne adaptive 

modifee (MAM) [Venturini, 1994] procedure: If the fitness has been adjusted 1/ times, Fj = Fj + 

(j’ - Fj). Otherwise Fj is set to the average of the values of  ’ seen so far. 



 

 

Figure 5: Schematic of Wilson’s XCS. 

 

 

In short, in XCS fitness is an inverse function of the error in reward prediction, with errors belownot 

increasing fitness. The maximum P(ai) of the system’s prediction array is discounted by a factor  and used to 

update rules from the previous time step. Thus XCS exploits a form of Q-learning [Watkins, 1989] in its 

reinforcement procedure. The GA originally occurred in [M] but Wilson [1998] later move it to [A] to further 

reduce the potential for recombining rules inappropriately, i.e., when there is significant asymmetry in the 

generalisation space for each action in a given match set (see [Bull, 2014] for discussion). Two rules are 

selected based on fitness from within the chosen [A]. Rule replacement is global and based on the estimated size 

of each action set a rule participates in with the aim of balancing resources across niches. The GA is triggered 

within a given action set based on the average time since the members of the niche last participated in a GA 

(after [Booker, 1989]). See [Butz & Wilson, 2002] for a full algorithmic description of XCS. 

 

Wilson originally demonstrated results on multiplexer functions and a maze problem. Importantly, he shows 

how maximally general solutions are evolved by XCS. This is explained by his “generalization hypothesis”: 

 



“Consider two classifiers C1 and C2 having the same action, where C2’s condition is a generalization of C1’s. 

…. Suppose C1 and C2 are equally accurate in that their values of are the same. Whenever C1 and C2 occur in 

the same action set, their fitness values will be updated by the same amounts. However, since C2 is a 

generalization of C1, it will tend to occur in more [niches] than C1. Since the GA occurs in [niches], C2 would 

have more reproductive opportunities and thus its number of exemplars would tend to grow with respect to 

C1’s. …. C2 would displace C1 from the population” [Wilson, 1995]. 

 

Butz et al. [2004] studied this hypothesis formally, introducing the concept of different pressures acting within 

XCS and then examined how they interact. They term the process described by Wilson above as the set 

pressure, which occurs due to the niche GA for reproduction and global GA for deletion. Kovacs [1997] 

extended Wilson’s idea, presenting the “optimality hypothesis” which suggests that due to the set pressure, XCS 

has the potential to evolve a complete, accurate and maximally general (compact) description of a state-action-

reward space. Butz et al. [2004] begin by approximating the average specificity of an action set s([A]) given the 

average specificity in the population s([P]): 

 

s([A]) = s([P]) / (2 - s([P])) 

 

For an initially random population, this indicates that the average specificity of a given [A] is lower than that of 

the population [P]. Opposing the set pressure are the pressures due to fitness and mutation since the former 

represses the reproduction of inaccurate overgeneral rules and the latter increases specificity. They then extend 

the set pressure definition to include the action of mutation, resulting in the "specificity equation": 

 

s([P(t+1)])  = s([P(t)]) +   fga   ( ( 2 . ( s([A]) +   mut - s([P(t)]) ) / N ) 

  

where mut is the average change in specificity between a parent rule (cl) of specificity s(cl) and its offspring 

under mutation, defined as 0.5(2 - 3s(cl)), and fga is the frequency of GA application per cycle. It is shown that, 

for a number of simple scenarios such as a random Boolean function, this equation is a good predictor of 

resulting specificity and they note this "represent[s] the first theoretical confirmation of Wilson’s generalization 

hypothesis" [ibid.]. The ability of XCS to maintain niches was explored formally in [Butz et al., 2007]. 

 



Butz et al. [2004] also identified two potentially conflicting challenges for XCS, namely that the population of 

rules needs to be sufficiently general to cover the input space, whilst rules must be specific enough such that 

there is an effective fitness gradient towards accuracy. Butz [2006] later showed how, by giving consideration to 

the bounds of these challenges, together with those of reproduction and niche support, XCS can PAC-learn a 

sub-class of k-DNF problems, i.e., learn their correct solution in polynomial time with high probability. 

 

Since its introduction, a number of aspects from the wider field of machine learning have been explored within 

XCS (see [Lanzi, 2008] for a general review). From evolutionary computing, techniques such as rank-based 

selection (e.g., [Butz et al., 2005a]), parameter self-adaptation (e.g., [Hurst & Bull, 2002]), local search (e.g., 

[Wyatt & Bull, 2004]), and estimation of distribution algorithms (e.g., [Butz et al., 2006]) have been explored, 

along with non-binary representation schemes. The conditions in XCS have been represented by things such as 

real-valued intervals (e.g., see [Stone & Bull, 2003] for discussions), trees (e.g., [Lanzi & Perrucci, 1999], after 

a proposal in [Wilson, 1994]) and developmental approaches [Wilson, 2008]. The actions of rules have been 

represented by trees (e.g., [Iqbal et al., 2013], after [Ahluwalia & Bull, 1999]) and linear approximators (e.g., 

[Tran et al., 2007], after [Wilson, 2002]). A whole rule in XCS has also been represented using fuzzy logic (e.g., 

[Casillas et al., 2007], after [Velenzuela-Rendon, 1991]), neural networks (e.g., [Bull & O’Hara, 2002]), and 

logic networks (e.g., [Bull, 2009]). Techniques considered from reinforcement learning include gradient descent 

[Butz et al., 2005b] and eligibility traces [Drugowitsch & Barry, 2005]. Moreover, general ideas such as the use 

of ensembles (e.g., [Bull, et al. 2007]) and multi-agent systems (e.g., [Hercog & Fogarty, 2002]) have also been 

considered with XCS.  

 

Wilson removed the message list from LCS in his ANIMAT and didn’t return to the concept until he presented 

ZCS. As a possible area of future research, Wilson [1994] describes a “memory register”. Here a global internal 

register’s current content/state would be matched by a defined part of each rule’s condition, along with the 

external stimulus. Similarly, rule actions would contain an element to update the content of the register, as well 

as supply the external response. As such, this is very similar to the original structure of CS-1. Lanzi and Wilson 

[2000] showed it was possible to solve non-Markov mazes through the development of the idea in XCS. An 

alternative approach to memory was suggested by Wilson and Goldberg [1989] wherein rules link together to 

form “corporations”. Tomlinson and Bull (e.g., [2002]) showed some success with the idea in XCS.     



Wilson prophetically suggests at the end of his paper introducing XCS: “The results point to the conclusion that 

accuracy-based fitness and a niche GA form a promising foundation for future classifier system research” 

[Wilson, 1995]. As mentioned above and shown in Figure 1, XCS and these key features have been extended 

from reinforcement learning as will now be discussed. 

4. The Evolution of XCS 

4.1 UCS: Supervised Learning  

 

Starting with NEWBOOLE, it has long been noted that in the use of LCS for tasks where there is an immediate 

reward indicating correctness, the standard reinforcement learning approach can be altered. UCS [Bernado 

Mansilla & Garrell, 2003] uses the accuracy calculation of AU-BOOLE to replace the standard running average 

error update in XCS. That is, j = number of correct classifications/experience, with experience defines as the 

number of times a rule has matched. Thereafter, Fj = (j)


 and the GA is run in the correct set [C], with deletion 

a global operation based upon the size of [C] (Figure 6). 

 

 

 

 
 

 

 
Figure 6: Schematic of UCS. 

 

 



The main effect of the change to a supervised update is that UCS only maintains a set of rules which receive 

high payoff, as opposed to XCS’s construction of a full state-action-reward map. As a consequence, UCS was 

shown to learn more quickly than an equivalent XCS on a number of benchmark tasks. As well as the reduced 

generalization task, it was also shown to learn more effectively due to the change in the fitness pressure for 

certain types of problem from the simplified fitness function. UCS and XCS are shown to be competitive with a 

number of well-known machine learning techniques over well-known real-world datasets. 

 

In a few cases, XCS was found to outperform UCS on the real-world datasets and it was speculated this is due to 

in part to a lack of fitness sharing within niches. Later inclusion of the same relative accuracy calculation into 

UCS gives improved performance, particularly with unbalanced datasets [Orriols-Puig & Bernado Mansilla, 

2008]. However, XCS remains a robust classification data mining algorithm (see [Fernandez et al., 2010]).   

 

Like XCS, a number of techniques have been incorporated into UCS, such as the use of rank-based selection 

(e.g., [Orriols-Puig & Bernado Mansilla, 2008]) and fuzzy logic (e.g., [Orriols-Puig et al., 2009]). It has also 

been used within ensembles, including with the use of neural networks to provide the action (e.g., [Dam et al., 

2008]). Ideas from the wider ensemble/mixture-of-experts literature have also been used to understand and 

refine UCS (e.g., [Edakunni et al., 2011]). 

 

4.2 XCSC: Unsupervised Learning 

 

Unsupervised learning describes those tasks under which structure is sought in unlabelled data without further 

external input. Perhaps somewhat surprisingly, no previous suggestion of the use of LCS for such learning is 

known in the literature until the work of Tammee et al. [2006; 2007] on clustering (see Figure 7). Clustering is 

an important unsupervised learning technique where a set of data are grouped into clusters in such a way that 

data in the same cluster are similar in some sense and data in different clusters are dissimilar in the same sense 

(see [Xu & Wunsch, 2009] for an overview). Most clustering algorithms require the user to provide the number 

of clusters, and the user in general has no idea about the number of clusters (e.g., see [Tibshirani et al., 2000]). 

Hence this typically results in the need to make several clustering trials with different numbers of clusters from 

1 to the square-root of the number of data points, and select the best clustering among the partitioning with 

different number of clusters.  



 

Tammee et al. show how the generalization mechanisms of XCS can be used to identify clusters – both their 

number and description. Rules in their XCSC use an interval representation of the form {{c1 ,s1}, ….. {cd ,sd}}, 

where c is the interval’s range centre from [0.0,1.0] and s is the “spread” from that centre from the range (0.0,s0] 

and d is a number of dimensions. Each interval predicates’ upper and lower bounds are calculated as follows: [ci 

- si, ci + si]. If an interval predicate goes outside the problem space bounds, it is truncated. Rule fitness consists 

of updating the matching error  which is derived from the Euclidean distance with respect to the input x and c 

in the condition of each member of the current [M] using the Widrow-Hoff delta rule with learning rate  
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The rest of XCS processing remains unchanged. Hence the set pressure encourages the evolution of rules which 

cover many data points and the fitness pressure acts as a limit upon the separation of such data points, i.e., the 

error.  

 

 

 

Figure 7: Schematic of XCSC. 

 

Tammee et al. [2006] began by using a slightly simplified version of XCS as the underlying LCS (YCS) [Bull, 



2005], but found that XCS’s relative accuracy fitness function was more effective than a function directly 

inversely proportional to error [Tammee et al., 2007]. Note this is similar to the aforementioned findings with 

UCS [Orriols-Puig & Bernado Mansilla, 2008]. Moreover, since the 0  parameter controls the error threshold of 

rules, Tammee et al. investigated the sensitivity of XCSC to its value by varying it. Their experiments show 

that, if 0 is set high, e.g., 0.1, in less-separated data the contiguous clusters are covered by the same rules. They 

therefore developed an adaptive threshold parameter scheme which uses the average error of the current [M]: 

 

)/( ][0  Mj N                                        

Where j  is the average error of each rule in the current match set and N[M] is the number of rules in the current 

match set. This is applied before the fitness function calculations. Experimentally Tammee et al. found =1.2 

was most effective for the problems they considered. 

 

This work has recently been extended to include hierarchical cluster/rule merging and voting (e.g., [Qian et al., 

2013]). 

 

4.3 XCSF: Function Learning 

 

Wilson [1995] proposed that XCS could be modified to learn functions, i.e., problems of the general form 

y=f(x), and subsequently presented XCSF [Wilson, 2001][Wilson, 2002]. Rules in XCSF typically use an 

interval representation of the form {{l1 u1}, ….. {ld ,ud}}, where li (“lower”) and ui  (“upper”) are integers. A 

rule matches an input x with attributes xi  if and only if li  ≤ xi  ≤ ui  for all xi . Having first used the standard 

prediction creation of XCS, Wilson introduces piecewise-linear approximators to each rule, i.e., functions of the 

form h(x) = w0 + w1x1 + … wdxd. Rather than add the weights wj to the rule representation to be learned under 

the GA, a variant of a simple gradient descent method is employed: Δwj = (η/|x’|
2
) (t - o)xj, where t is the target, 

o is the output, and η is a learning rate.  

 

Wilson shows the basic XCSF learning a sine function and multi-dimension root-mean-squared functions 

wherein the local approximations are shown to be adaptive to the function being approximated such that the size 



of the local interval responds to the curvature of the function.  This increases efficiency and as well introduces 

an additional kind of generalization. This has subsequently been explored extensively, using a variety of rule 

condition representations and function approximation techniques (e.g., see [Lanzi et al., 2007][Butz et al., 

2008]). The theoretical underpinnings of XCS have also been extended to XCSF (e.g., [Stalph et al., 2012a]).  

 

 

 

 
 

 
Figure 8: Schematic of XCSF. 

 

 

Wilson [2002] extended the idea to propose a generalized rule format such that the prediction associated with a 

state-action rule under reinforcement leaning is computed in the same way, as opposed to maintained as (an 

adjusted) parameter (see also [Giani et al., 1995]). Again, this has been explored using a variety of rule 

representations and approximators (e.g., see [Loiacono et al., 2009]). It can be noted that in rule representations 

which can also provide memory through individual rule-internal structures, such as recurrent connections in a 

network, this opens up new ways by which to solve non-Markov tasks (e.g., see [Preen & Bull, 2013]).  

 

4.3 XACS: Model Learning 

 

As noted above, Stolzmann [1998] presented an accuracy-based LCS in which rules are extended to predict the 

subsequent sensory state from their use. That is, rules are of the general form “IF condition AND assertion 



THEN effect”. The mechanism through which such rules are learned is based upon the theory of Anticipatory 

Behavioural Control [Hoffmann, 1993] and not a simulated evolutionary process. The search algorithm, termed 

the Anticipatory Learning Process (ALP), has thus far relied upon the traditional ternary alphabet {0,1,#} (see 

[Gerard & Sigaud, 2001] for related systems). Butz et al. introduced the use of a niched GA alongside the ALP 

to improve the generalization abilities of ACS, termed ACS2 (see [Butz, 2002] for full details). Whilst effective, 

ACS2 was found to sometimes struggle to form both accurate environment models and state-action-reward 

models simultaneously. Drawing on XCSF, ACS2 was subsequently extended in XACS [Butz & Goldberg, 

2003] (figure 9).  

 

XACS maintains the principle features of ACS(2), using the ALP to specialize rules when their anticipated 

effect does not match the next state. As in ACS2, a # symbol in an effect indicates that the bit is not anticipated 

to change in the next state, whereas defined bits are anticipated to change to that value (unlike ACS). The GA is 

the same as in ACS2, using the time triggered scheme of XCS, with the mutation process only introducing #’s 

and crossover only happening over conditions. Running alongside ACS2 is a variant of XCSF to learn the value 

of states. The rules consist of a condition and prediction parameter, as in the first version of XCSF described 

above. The XCSF component is used each time external reward is received from the environment, updating 

predicted values using both its own current prediction and the model knowledge of the ACS2 component.  

 

 

 

 

 
 

Figure 9: Schematic of XACS (without XCSF component). 



 

 

 

Butz and Goldberg [2003] report improved performance over ACS2 in blocks world problems of varying sizes. 

Benefits of the model include a mechanism through which to bias action selection such that those rules whose 

anticipations are least accurate are chosen preferentially over a random action, the ability to learn multiple tasks 

simultaneously over the same environment by including an XCSF component per task (see [Studley & Bull, 

2006] for a related study), etc. Given the supervised learning-like nature of building anticipations, they have also 

been learned in a version of XCSF using a neural network to predict the next state (e.g., [Bull et al., 2007]). 

5. Conclusion 

Architecturally, XCS can be traced from ANIMAT via ZCS, with GOFER’s triggered niche GA being included. 

The use of accuracy began with CS-1, although it was focused on the highest reward per niche. Moreover, 

XCS’s generalization pressure shares features with that in CS-1 since it is also based on accuracy and rate of 

use. In CS-1 predicted rewards are only updated if they are accurate or below the current estimate, with action 

and GA selection based upon this parameter: more accurate rules are more likely to reproduce. Rule ages are 

reset after use and deletion is based upon age: more frequently used rules are less likely to be replaced. Thus 

accurate, more general (frequently used) rules are propagated in CS-1. XCS combines both accuracy, in its pure 

form, and frequency of use into the selection process of the GA. This creates a generalization pressure but, 

importantly, also frees the deletion process of the GA to be used to maintain multiple niches in an emergent way 

thereby addressing one of the main issues in CS-1 that Holland sought to tackle by switching to strength sharing 

in his subsequent LCS. Much has subsequently been explored with XCS, and there remains much to explore. 

 

XCS has been used effectively to control physical robots in continuous time and space where the action space 

was discrete and relatively small (e.g., [Studley & Bull, 2005]). Wilson [2007] has presented a “generalized 

classifier system” concept whereby LCS can work in a continuous-valued action space. Whilst studies have 

shown progress in this area for regression problems (e.g., [Preen & Bull, 2013]), there is still more to be done 

for reinforcement learning problems (e.g., [Casillas et a., 2007][Howard et al., 2009]). 

 

As highlighted in [Bull, 2011], XCSC can in hindsight be viewed as a type of Artificial Immune System (AIS). 

For nearly thirty years (starting with [Farmer et al., 1986]) similarities between LCS and AIS have periodically 



been noted, but the two fields have developed independently. The use of selection within niches of co-active 

rules is akin to the scheme used in a general class of AIS known as clonal selection algorithms (e.g., CLONALG 

[De Castro & Von Zuben, 2002]). The use of a time-delayed evolutionary process is also similar to the dendritic 

cell AIS (e.g., [Greensmith et al., 2008]). It can also be noted that the adaptive affinity threshold finding in 

XCSC [Tammee et al., 2007] is much like the result reported in [Bezerra et al., 2005] with an AIS. A potential 

area for future research would therefore appear to be to explore the cross-fertilization of mechanisms between 

what are now two relatively mature fields (e.g., see [Timmis et al., 2008] for an overview of AIS).  

 

LCS were presented as an architecture through which to study cognitive systems. Whilst the reinforcement 

learning element has a clear connection to neuroscience (e.g., [Schultz, 1998]), the use of an evolutionary 

process to build knowledge representations has lacked a strong connection. The general similarities between 

LCS and artificial neural networks have long been noted (e.g., [Smith & Cribbs, 1994]), and as mentioned above 

such networks have been used as rules, including spiking models (e.g. [Howard et al., 2010]). However, there 

are suggestions that neurogenesis may be significant in adult learning (e.g., [Becker, 2005]) and that such 

neurons may vary genetically upon production (e.g., [Coufal et al., 2009]). Selectionist models of brains, i.e., 

forms of neural Darwinism, continue to be developed (e.g., [Fernando et al., 2012]). It has recently been shown 

[Stalph et al., 2012b] that XCSF can be very similar to the locally-weighted projection regression algorithm 

[Vijayakumar et al., 2005], suggesting its rules may be seen to specify local receptive fields. Another potential 

area for future research would therefore appear to be to move LCS closer to computational neuroscience.  
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