
A Brief History of Learning Classifier Systems:

From CS-1 to XCS and its variants

Larry Bull

Department of Computer Science & Creative Technologies

University of the West of England

Bristol BS16 1QY U.K.

larry.bull@uwe.ac.uk

Abstract

The direction set by Wilson’s XCS is that modern Learning Classifier Systems can be characterized by

their use of rule accuracy as the utility metric for the search algorithm(s) discovering useful rules. Such

searching typically takes place within the restricted space of co-active rules for efficiency. This paper

gives an overview of the evolution of Learning Classifier Systems up to XCS, and then of some of the

subsequent developments of Wilson’s algorithm to different types of learning.

Keywords: anticipation, classification, clustering, function approximation, reinforcement learning.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323890832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Learning Classifier Systems (LCS) are rule-based systems, where the rules are usually in the traditional

production system form of “IF condition THEN action”. An evolutionary algorithm and/or other heuristics are

used to search the space of possible rules, whilst another learning process is used to assign utility to existing

rules, thereby guiding the search for better rules. The LCS formalism was introduced by John Holland [1976]

and based around his better known invention – the Genetic Algorithm (GA)[Holland, 1975]. A few years later,

in collaboration with Judith Reitman, he presented the first implementation of an LCS, termed “Cognitive

System Level 1” (CS-1) [Holland & Reitman, 1978]. Holland then revised the framework to define what would

become the standard system for many years [Holland, 1980]. However, Holland’s full system was somewhat

complex and practical experience found it difficult to realize the envisaged behaviour/performance, despite

numerous modifications (e.g., see [Wilson & Goldberg, 1989]), and interest waned. Some years later, Stewart

Wilson introduced a form of LCS in which rule fitness is calculated solely by the accuracy of the predicted

consequences of rule actions – XCS [Wilson, 1995]. The following two decades have seen a resurgence in the

use of LCS as XCS in particular has been found able to solve a number of well-known problems optimally (e.g.,

see [Butz, 2006]). Perhaps more importantly, LCS have been applied to a number of real-world problems (e.g.,

see [Bull, 2004]), particularly data mining (e.g., see [Bull et al., 2008]), to great effect. Formal understanding of

LCS has also increased (e.g., see [Bull & Kovacs, 2005]). The purpose of this paper is to provide some

historical context to the area of modern accuracy-based Learning Classifier Systems before presenting some of

the main developments since the introduction of XCS twenty years ago (see [Lanzi & Riolo, 2000][Urbanowicz

& Moore, 2009] for a previous historical reviews). The use of evolutionary algorithms to design whole rule sets,

i.e., so-called Pittsburgh-style LCS [Smith, 1980], is not considered here.

2. The Evolution of LCS

Holland developed the LCS formalism as an approach to reinforcement learning, that is, learning through trial-

and-error. Reinforcement learning methods seek to ascertain the value of executing each possible action

(assertion) available within each state (condition) of a given problem (see [Sutton & Barto, 1998] for an

introduction). Within psychology, the study of trial-and-error learning can be traced back to Edward Thorndike

and his “Law of Effect” [Thorndike, 1911], and within computer science to Alan Turing and his “P-type

unorganised machine” [Turing, 1948]. Whilst Farley and Clark [1954] were perhaps the first to implement

reinforcement learning within a computer, Holland was influenced by Arthur Samuel’s seminal early work on

draughts/checkers [Samuel, 1959], which itself drew upon Claude Shannon’s work on chess, seemingly the first

consideration of learning a value function through experience [Shannon, 1950]. Samuel [1959] described a

scheme for adjusting temporally successive estimates of the end reward value from a sequence of moves

(improved in [Samuel, 1967]).

Figure 1: Learning Classifier Systems’ family tree.

Holland’s [1976] interest was in how an artificial system may continuously adapt to novelty, significantly,

extending previous studies by also considering how to build suitable knowledge representations thereby

enabling flexible, continual learning through trial-and-error to maximise reward. A variant of his Genetic

Algorithm was incorporated as an effective approach to this ability. The suggestion that a simulated

evolutionary process may prove useful in artificial systems was first made by Turing [1948], with early

implementations within a computer by Fraser [1957] and Box [1957] (see [Eiben & Smith, 2003] for an

introduction). The combined reinforcement learning and evolutionary computing architecture was termed CS-1

[Holland & Reitman, 1978]. Figure 1 shows a family tree of the LCS considered as the significant steps in the

evolution of XCS from CS-1 to be discussed in this paper, beginning with CS-1.

2.1 Cognitive System Level 1

On each discrete time cycle, CS-1 receives a binary encoded description of the current state of its environment.

The system determines an appropriate response based on this input, its last action, and the current contents of an

internal memory space, termed a message list (Figure 2). The rule-base consists of a population of N condition-

assertion rules or "classifiers". The rule conditions are strings of characters from the ternary alphabet {0,1,#}.

The # acts as a wildcard allowing generalisation such that the rule condition 1#1 matches both the input 111 and

the input 101, for example. Rule assertions contain both an action and an internal message, both formed from

binary strings. All rule components are initialised randomly. Also associated with each rule are a number of

parameters, including age, frequency of use, and a prediction of the typical reward received from its use, which

is also the fitness metric (explained later).

On receipt of an input message, the rule-base is scanned and any rule whose condition matches the external

message, the content of the message list, and the previous action becomes a member of the current "match set"

[M]. A heuristic considering aspects such as the specificity of matching and the predicted future reward is then

used to determine the top ten eligible rules. The system response is then chosen probabilistically from that set.

The chosen rule’s action is executed in the environment, the message list updated, its age halved, and frequency

increased.

CS-1 uses an epochal reinforcement learning scheme such that the identification of all rules that have provided

an action is recorded, in order, between rewards. If an external reward is received, the predicted reward of each

rule in this set [E] is adjusted at a rate inversely proportional to their frequency parameter “to reflect their

accuracy in anticipating this reward. Those predicted payoffs that were consistent with (not greater than) this

reward are maintained or increased; those that overpredicted are significantly reduced” [Holland & Reitman,

1978]. A further heuristic is applied to the predictions such that the actual value of reward used to update each

member of [E] is “attenuated”, an adjustment based on the relative size of reward predicted by rules and by their

successors in [E], it being incremented each time the latter is higher than the former. “This parameter is highly

correlated with the delay between a response and the reward” [Holland & Reitman, 1978] and may be seen as an

early form of temporal difference learning.

Figure 2: Schematic of CS-1.

After every ten rewards received, the contents of the rule-base are altered by the simulated evolutionary process

of the GA. The implemented CS-1 could take one of two actions and so ran the evolutionary search process

within the two sub-populations, that is, action niches. Fitness proportionate selection using the predicted reward

of each rule as the fitness value picks two parents from the rule-base population. These are then combined using

one-point crossover (mutation is not mentioned). One of the two offspring produced is selected at random to be

inserted into the rule-base. Replacement uses the age of rules. “Recall that a classifier with a poor predicted

payoff rarely wins competitions; without a win, its age increases steadily. Age therefore, reflects the classifier’s

quality as well as its frequency of use. To make room for the new classifier therefore, one with an old age is

deleted.” [Holland & Reitman, 1978]. Moreover, from the set of oldest rules within the niche, the one closest in

Hamming(-like) distance is chosen; a form of crowding is used.

CS-1 was shown able to solve a simple maze task with seven locations, two actions, and two types of reward,

before being applied to an extended maze. Holland and Reitman report faster learning of the second maze using

a system previously trained on the smaller maze, in comparison to a naïve system. Analysis of the external input

patterns indicates minor changes in effective general rules in the smaller maze are close in rule-space to those in

the larger, as might be expected (see [Iqbal et al., 2014] for related recent work).

LCS aim to build an efficient representation of any underlying regularities within the given problem domain

during learning. The inherent pressure within CS-1 to discover maximally general rules - rules which aggregate

the most problem states together from which the same action results in the same reward - over more specific

(less # symbols in their condition) but equally accurate predictors comes from the evolutionary deletion scheme.

More specific rules tend not to match so often and so their age increases more rapidly than more general, but

also accurate rules; the probability of removal of specific rules from the rule-base increases with specificity.

Similarly, the pressure to remove over general rules – rules that aggregate too many states together such that the

level of reward received from their use varies – comes from the reinforcement scheme and evolutionary

selection. Over or under prediction of a reward value results in a significant reduction in the predicted reward of

a rule, the parameter used as the fitness measure for reproduction by the GA; inaccurate rules have lower fitness

and hence are unlikely to be selected.

However, the described system struggles to maintain more than one or a very few rules within a population.

That is, the GA tends to converge upon a single (maximally general) solution. This explains why CS-1 runs the

GA in the two explicit action sub-population niches. In the two mazes, CS-1 always started in the middle and

had to maintain the same action across a number of states to an end goal state where reward was given. Whether

the system should go left or right depended upon an internal value. Hence a rule which generalised over all the

states to the left and one which generalised over all the states to the right was the optimal solution. By running

the GA in two niches based on actions, both were sustainable indefinitely.

With this apparent limitation, Holland subsequently altered a number of aspects of CS-1 in his “standard

system”, most notably removing the use of reward prediction accuracy and frequency of rule use. CS-1’s use of

both in part anticipated XCS’s dependence on similar qualities.

2.2 Holland’s Standard Architecture

A few years later Holland [1980] revised CS-1 and described what would become the standard architecture, here

termed “Learning Classifier System” (LCS). It should be noted that Holland seems not to have used the prefix

“learning” at the time; Goldberg [1985] may have been first to add the emphasis. The main change from CS-1

was to introduce a reinforcement learning scheme based upon an economic metaphor, known as the “bucket

brigade” (after the water passing chains of fire fighters), in which rule utility is judged by the accrual of credit.

In this way, rules acting in temporal chains leading to external reward are viewed as the middlemen of supply

and demand chains. Rules maintain a single parameter of credit (termed strength) received. This is used both for

action selection and in rule discovery by the GA. The message list is extended to enable multiple rules to post

their assertions. Rule conditions no longer have a fixed structure to consider the current environmental state, the

contents of the message list and the last action. Instead, all conditions and assertions are of the same length, with

conditions also able to include a logical NOT. Assertions are now built from the same alphabet as conditions

{0,1,#} such that information may “pass through” from either the condition or the string (external input or

internal message) which the rule matches where a # exists.

Figure 3: Schematic of Holland’s LCS.

On each cycle, a binary external state description is placed onto the message list, the rule-base is scanned, and

any rule whose condition matches the external message and/or the other contents of the message list becomes a

member of [M] (Figure 3). Rules are selected from those comprising [M], through a bidding mechanism, firstly

to become the system's external action and then to post their assertion onto the (fixed size) message list for the

next cycle. This selection is performed by the roulette wheel scheme based on rule bids. Rules' bids consist of

two components, their strength and the specificity (fraction of non-# bits) of their condition. Further, a constant

(here termed , where 0<<1) is factored in, i.e., for a rule C in [M] at time t:

Bid(C,t) = β.specificity(C).strength(C,t)

Reinforcement consists of redistributing bids made between subsequently chosen rules. The bid of each winner

at each time-step is placed in a "bucket". A record is kept of the winners on the previous time step and they each

receive an equal share of the contents of the current bucket; fitness is shared amongst concurrently activated

rules. If a reward is received from the environment then this is paid to the winning rule which produced the last

system output. However whether all rules that have posted a message share the external reward appears to vary

in the literature, being both included [Holland, 1985] and excluded [Holland, 1986]. “Thus, the bucket brigade

assures that early-acting, stage-setting classifiers receive credit if they (on average) make possible later, overtly

rewarding acts” [Holland, 1986]. The emphasis upon average ability relaxes the previous explicit focus on

accurately predicting reward; there is an apparent reduction in the selective pressure for consistent behaviour

which formed the basis of CS-1. With hindsight, this change was perhaps the most significant between the two

LCS.

As noted above, the periodically applied GA uses rule strength to select two parents, these are then combined

using one-point crossover and mutated. Both offspring are inserted into the rule-base, replacing rules chosen

inversely proportional to their strength. Since reward is shared amongst rules, the GA is in principal able to

maintain multiple useful rules within the rule-base (discussed later).

A number of other mechanisms were proposed by Holland but for the sake of clarity they are not described in

detail here. These include the idea that hierarchical rule associations could emerge via specific rules out-bidding

more general rules in certain important situations, and extra “tag” regions of conditions and assertions being

added would aid the formation of sequential induction (see [Holland et al., 1986] for a full treatment). These

ideas do not feature in modern LCS (see [Smith et al., 2010] for an exception).

2.3 GOFER

Booker [1982] presented a form of Holland’s standard LCS which extends the principle of using a GA to

discover any underlying regularities in the problem space, dividing the task of learning such structure from that

of supplying appropriate actions to receive external reward (see [Booker, 1988] for an overview]). Here a

separate LCS exists for each of these two aspects. A first LCS receives binary encoded descriptions of the

external environment, with the objective to learn appropriate regularities through generalizations over the

“perception” space. This is seen as analogous to learning to represent categories of objects. The matching rules

not only post their messages onto their own message list but some are passed as inputs to a second LCS. The

second LCS therefore only receives reward when it correctly exploits such categorizations with respect to the

current task. GOFER contains a number of innovations including partial matching and rule excitation levels,

however it is the use of restricting the process of rule-discovery to concurrently active rules which has proven

most influential (see [Booker, 1985]). Here parents are chosen from within a given [M] thereby avoiding the

mixing of rules with generalizations which (potentially) consider markedly different aspects of the problem.

Booker [1989] later extended the idea to trigger the GA during learning whilst also leaving it running at a

constant rate under the reinforcement process as Holland did. In particular, rules maintain an approximation of

their “consistency”, a measure of the variance in the reward they receive. If a given percentage of rules in [M]

have a level of inconsistency above a threshold, the fitness of all consistent rules is increased and the GA run: “

… consistent classifiers are thereby made more attractive to the genetic algorithm” [ibid.]. XCS uses both a

form of triggered niche GA and rule consistency.

2.4 ANIMAT and ZCS

Stewart Wilson began to develop versions of Holland’s LCS as an approach to understanding animal/human

intelligence through the computer simulation of simple agents in progressively more complex domains - termed

the animat approach. The first of these, ANIMAT [Wilson, 1985], makes a number of simplifications to

Holland’s architecture. In particular, the message list is removed and matching rules are grouped by their action

in the bucket brigade process, forming action sets [A]. The GA is also sensitive to rule actions, somewhat akin

to CS-1: a first parent is chosen based upon its strength from the rule-base, the second is then chosen from the

subset of the population with the same action. ANIMAT controlled a simple agent in a 2D gridworld, able to

sense the contents of the eight locations surrounding it and able to move in each such direction if clear. Wilson

showed learning was possible such that effective paths to food reward signals were discovered. However, he

noted that the system had “nothing which preferentially reinforces the most expeditious classifiers” [ibid.]. To

encourage the shortest path to reward from a given start location, rules were extended to maintain an estimate of

the number of subsequent steps to reward from their use, updated locally based upon the estimates of successor

rules. This was factored into action selection via dividing strength by distance. ANIMAT also includes a guided

recombination operator, replacing dissimilar bits in parent conditions with a # to aid the formation of useful

generalizations.

Figure 4: Schematic of Wilson’s ZCS.

Wilson later returned to ANIMAT, further simplifying it in his “zeroth-level” classifier system (ZCS) [Wilson,

1994] (Figure 4). Importantly, the bucket brigade was again modified to incorporate a mechanism from temporal

difference learning [Sutton & Barto, 1981] (see also [Dorigo & Bersini, 1994] for an early connection). Here the

fraction of the total strength of a given [A] in the bucket is further reduced by a discount rate (0<<1) before

being shared equally amongst the rules of the previous action set [A]-1. Discounting allows systematic control

over the influence of future rewards, replacing Wilson’s previous distance approximation mechanism. The

effective update of action sets is thus (0<<1):

strength([A],t+1) = strength([A],t) + [Reward + .strength([A]+1) – strength([A],t)]

To give increased focus to the search, rules in a given [M] but not [A] have their strengths reduced by a tax;

rules can only persist if they regularly receive (high) reward. A “create” mechanism in ANIMAT is also retained

in ZCS, but slightly modified. Here, if an [M] is empty or if the total strength of [M] is below a given threshold,

a new rule is created to cover the current environmental input, randomly augmented with some #, and given a

random action. The action niche restriction and generalization mechanisms of the GA are removed. Parental

rules give half of their strength to their offspring under the GA which fires at a fixed rate .

Results with ZCS indicated it was capable of good, but not optimal, performance [Wilson, 1994][Cliff & Ross,

1995]. Wilson [1994] also included a version of the off-policy temporal difference learning algorithm Q-

learning [Watkins, 1989] to some benefit. He also proposed to use the triggered niche GA of GOFER on top of

the panmictic/global scheme described above. Bull [2005] showed the potential for disruption of the reward

sharing scheme using just a niche GA in a similar LCS but no combination is known. It has been shown that

ZCS is capable of optimal performance in a number of well-known test problems but that it appears to be

particularly sensitive to some of its parameters [Bull & Hurst, 2002], and it has been shown to outperform XCS

in classes of noisy domain [Stone & Bull, 2005]. XCS maintains a number of ZCS’s basic features but makes

significant alterations.

2.5 BOOLE, NEWBOOLE and AU-BOOLE

After introducing a number of modifications to Holland’s architecture in ANIMAT, but before ZCS, Wilson

presented a specialised form designed for reinforcement learning tasks where immediate reward is given. In

particular, his BOOLE system was designed for binary decision tasks [Wilson, 1987]. BOOLE maintains the

[M]→[A] mechanism of ANIMAT, also removing the message list. The GA no longer restricts selection of the

second parent to having the same action when using crossover, and reproduction causes the strength of parents

to be reduced and donated to offspring akin to the mechanism later used in ZCS. It has been shown that reducing

strength can create a pressure for more general rules as they update more frequently and therefore regain reward

faster [Bull, 2005]. Again, as in the later ZCS, rules in [M] but not [A] have their strengths reduced by a tax.

BOOLE was shown able to learn two- and three-address bit multiplexer problems (6MUX and 11MUX,

respectively), with the effects of varying the tax rates, genetic operators and including a reward bias based upon

the degree of generalisation in rules explored.

Bonelli et al. [1990] made the significant step of presenting a form of LCS for supervised learning tasks, that is,

tasks where the correct response is known at the point of internal updating. Extending BOOLE, they noted that

the set of rules in [M] providing the correct response, regardless of whether they formed [A], should receive

reward. Hence they split [M] into the correct set [C] and incorrect set Not[C] for their NEWBOOLE system.

BOOLE’s uses of taxes and a bias in the distribution of reward based upon generality were kept. They showed

significant improvement in learning speed compared to BOOLE and to an artificial neural network using

backpropagation on the 6MUX and 11MUX tasks. Hartley [1999] showed NEWBOOLE to be competitive with

XCS on a well-known set of binary classification tasks, although XCS’s maintenance of a full state-action-

reward map gave it an advantage in some forms of non-stationary task (see [Bull & Hurst, 2002] for discussion).

Seemingly independently, Frey and Slate [1991] also presented a variant of BOOLE for supervised learning

tasks in which they also update the correct set within [M] regardless of the output. Having struggled to find the

correct balance of taxing and bid biasing for a letter recognition task, with reference to Holland’s [1976] original

ideas, they introduced the accuracy-utility system (here termed AU-BOOLE). Here each rule maintains two

parameters: accuracy, the ratio of correct bids to total bids made; and, utility, the ratio of correct bids when

chosen to total number of times chosen as the output. Accuracy is used in bidding in [M] and for reproduction,

and utility is used for deletion. Whilst performance with AU-BOOLE was found to be similar to their version of

NEWBOOLE, they report greater ease in finding useful parameters. As will be discussed, these ideas have been

incorporated into XCS, resulting in the “sUpervised Classifier System” (UCS) [Bernado Mansilla & Garrell,

2003].

2.6 CFSC2 and ACS

Holland and Reitman [1978] suggested a number of extensions to CS-1 at the end of their paper, particularly

ways by which to learn more sophisticated cognitive maps than the stimulus-response relations they had

achieved. “Cognitive maps allow the system to use lookahead to explore, without overt acts, the consequences

of various courses of action.” [ibid.]. Again, following Samuel [1959], they describe a scenario of rules being

linked over system cycles through the message list which do not cause external actions on each step. Holland

[1990] later returned to this aspect, proposing that the aforementioned extra “tag” regions of conditions and

assertions that can be added as arbitrary patterns would aid the formation of sequential induction of the

necessary form: IF condition AND assertion THEN next-condition. That is, Holland did not seek to change the

rule structure from his standard LCS to this direct form. Riolo [1991] was first to implement lookahead

capabilities within LCS with his CFSC2. He allowed the system to execute more than one cycle before

providing an action, added tags along the lines Holland [1990] had suggested, and introduced an extra strength

parameter to represent the predictive accuracy of a rule. Through tags, rules are either connected to external or

internal events, or both. Bidding is adjusted to also factor the accuracy of predicted next states of a rule (if any).

Rule chains which accurately map features in simple mazes with or without overt reward (latent learning) are

reported to emerge under a rule discovery process which is driven by internal and external messages rather than

a GA. That is, when no rules match or none are chained across system cycles, various heuristics are used to form

appropriate rules via tags. Roberts [1993] presented a related approach within ANIMAT which maintained

“followsets”, time-stamped information regarding rewards received or next states obtained after a rule had fired.

The value of such rewards is factored into rule strengths.

Wilson [1995] proposed altering the rule structure to contain the anticipated next state, with an “expecton” in

XCS. Stolzmann [1998] presented a system in which such a rule structure is used (the expecton component

termed the “effect”) – the Anticipatory Classifier System (ACS). Drawing upon a learning theory from cognitive

psychology, sub-populations of rules are learned per [A] via a specialisation heuristic (not a GA) for rules based

upon the environmental input, both in the condition and effect components. Rule utility is represented by the

accuracy of anticipations whilst external reward is used in bidding. A famous experiment with rats in a T-maze

[Seward, 1949] is simulated and the results indicate similar behaviour from the ACS. A combination of ACS

and XCS has been presented to achieve such model learning, as will be discussed (e.g., see [Butz & Goldberg,

2003]).

3. Wilson’s XCS

The most significant difference between XCS (Figure 5) and all other LCS prior to its presentation is that rule

fitness for the GA is not based on the amount of reward received by rules but purely upon the accuracy of

predictions (p) of reward. The intention in XCS is to form a complete and accurate mapping of the problem

space (rather than simply focusing on the higher payoff niches in the environment) through efficient

generalizations: XCS learns a value function over the complete state-action space. On each time step a match set

is created. A system prediction is then formed for each action in [M] according to a fitness-weighted average of

the predictions of rules in each [A]. The system action is then selected either deterministically or randomly

(usually 0.5 probability per trial). If [M] is empty covering is used.

Fitness reinforcement in XCS consists of updating three parameters, , p and F for each appropriate rule; the

fitness is updated according to the relative accuracy of the rule within the set in five steps:

i) Each rule’s error is updated: j = j + (| Reward - pj | - j)

ii) Rule predictions are then updated: pj = pj + (Reward-pj)

iii) Each rule’s accuracy j is determined: j = (0/)

orwhere

where

,andare constants controlling the shape of the accuracy function.

iv) A relative accuracy j’ is determined for each rule by dividing its accuracy by the total of the

accuracies in the action set.

v) The relative accuracy is then used to adjust the classifier’s fitness Fj using the moyenne adaptive

modifee (MAM) [Venturini, 1994] procedure: If the fitness has been adjusted 1/ times, Fj = Fj +

(j’ - Fj). Otherwise Fj is set to the average of the values of ’ seen so far.

Figure 5: Schematic of Wilson’s XCS.

In short, in XCS fitness is an inverse function of the error in reward prediction, with errors belownot

increasing fitness. The maximum P(ai) of the system’s prediction array is discounted by a factor and used to

update rules from the previous time step. Thus XCS exploits a form of Q-learning [Watkins, 1989] in its

reinforcement procedure. The GA originally occurred in [M] but Wilson [1998] later move it to [A] to further

reduce the potential for recombining rules inappropriately, i.e., when there is significant asymmetry in the

generalisation space for each action in a given match set (see [Bull, 2014] for discussion). Two rules are

selected based on fitness from within the chosen [A]. Rule replacement is global and based on the estimated size

of each action set a rule participates in with the aim of balancing resources across niches. The GA is triggered

within a given action set based on the average time since the members of the niche last participated in a GA

(after [Booker, 1989]). See [Butz & Wilson, 2002] for a full algorithmic description of XCS.

Wilson originally demonstrated results on multiplexer functions and a maze problem. Importantly, he shows

how maximally general solutions are evolved by XCS. This is explained by his “generalization hypothesis”:

“Consider two classifiers C1 and C2 having the same action, where C2’s condition is a generalization of C1’s.

…. Suppose C1 and C2 are equally accurate in that their values of are the same. Whenever C1 and C2 occur in

the same action set, their fitness values will be updated by the same amounts. However, since C2 is a

generalization of C1, it will tend to occur in more [niches] than C1. Since the GA occurs in [niches], C2 would

have more reproductive opportunities and thus its number of exemplars would tend to grow with respect to

C1’s. …. C2 would displace C1 from the population” [Wilson, 1995].

Butz et al. [2004] studied this hypothesis formally, introducing the concept of different pressures acting within

XCS and then examined how they interact. They term the process described by Wilson above as the set

pressure, which occurs due to the niche GA for reproduction and global GA for deletion. Kovacs [1997]

extended Wilson’s idea, presenting the “optimality hypothesis” which suggests that due to the set pressure, XCS

has the potential to evolve a complete, accurate and maximally general (compact) description of a state-action-

reward space. Butz et al. [2004] begin by approximating the average specificity of an action set s([A]) given the

average specificity in the population s([P]):

s([A]) = s([P]) / (2 - s([P]))

For an initially random population, this indicates that the average specificity of a given [A] is lower than that of

the population [P]. Opposing the set pressure are the pressures due to fitness and mutation since the former

represses the reproduction of inaccurate overgeneral rules and the latter increases specificity. They then extend

the set pressure definition to include the action of mutation, resulting in the "specificity equation":

s([P(t+1)]) = s([P(t)]) + fga ((2 . (s([A]) + mut - s([P(t)])) / N)

where mut is the average change in specificity between a parent rule (cl) of specificity s(cl) and its offspring

under mutation, defined as 0.5(2 - 3s(cl)), and fga is the frequency of GA application per cycle. It is shown that,

for a number of simple scenarios such as a random Boolean function, this equation is a good predictor of

resulting specificity and they note this "represent[s] the first theoretical confirmation of Wilson’s generalization

hypothesis" [ibid.]. The ability of XCS to maintain niches was explored formally in [Butz et al., 2007].

Butz et al. [2004] also identified two potentially conflicting challenges for XCS, namely that the population of

rules needs to be sufficiently general to cover the input space, whilst rules must be specific enough such that

there is an effective fitness gradient towards accuracy. Butz [2006] later showed how, by giving consideration to

the bounds of these challenges, together with those of reproduction and niche support, XCS can PAC-learn a

sub-class of k-DNF problems, i.e., learn their correct solution in polynomial time with high probability.

Since its introduction, a number of aspects from the wider field of machine learning have been explored within

XCS (see [Lanzi, 2008] for a general review). From evolutionary computing, techniques such as rank-based

selection (e.g., [Butz et al., 2005a]), parameter self-adaptation (e.g., [Hurst & Bull, 2002]), local search (e.g.,

[Wyatt & Bull, 2004]), and estimation of distribution algorithms (e.g., [Butz et al., 2006]) have been explored,

along with non-binary representation schemes. The conditions in XCS have been represented by things such as

real-valued intervals (e.g., see [Stone & Bull, 2003] for discussions), trees (e.g., [Lanzi & Perrucci, 1999], after

a proposal in [Wilson, 1994]) and developmental approaches [Wilson, 2008]. The actions of rules have been

represented by trees (e.g., [Iqbal et al., 2013], after [Ahluwalia & Bull, 1999]) and linear approximators (e.g.,

[Tran et al., 2007], after [Wilson, 2002]). A whole rule in XCS has also been represented using fuzzy logic (e.g.,

[Casillas et al., 2007], after [Velenzuela-Rendon, 1991]), neural networks (e.g., [Bull & O’Hara, 2002]), and

logic networks (e.g., [Bull, 2009]). Techniques considered from reinforcement learning include gradient descent

[Butz et al., 2005b] and eligibility traces [Drugowitsch & Barry, 2005]. Moreover, general ideas such as the use

of ensembles (e.g., [Bull, et al. 2007]) and multi-agent systems (e.g., [Hercog & Fogarty, 2002]) have also been

considered with XCS.

Wilson removed the message list from LCS in his ANIMAT and didn’t return to the concept until he presented

ZCS. As a possible area of future research, Wilson [1994] describes a “memory register”. Here a global internal

register’s current content/state would be matched by a defined part of each rule’s condition, along with the

external stimulus. Similarly, rule actions would contain an element to update the content of the register, as well

as supply the external response. As such, this is very similar to the original structure of CS-1. Lanzi and Wilson

[2000] showed it was possible to solve non-Markov mazes through the development of the idea in XCS. An

alternative approach to memory was suggested by Wilson and Goldberg [1989] wherein rules link together to

form “corporations”. Tomlinson and Bull (e.g., [2002]) showed some success with the idea in XCS.

Wilson prophetically suggests at the end of his paper introducing XCS: “The results point to the conclusion that

accuracy-based fitness and a niche GA form a promising foundation for future classifier system research”

[Wilson, 1995]. As mentioned above and shown in Figure 1, XCS and these key features have been extended

from reinforcement learning as will now be discussed.

4. The Evolution of XCS

4.1 UCS: Supervised Learning

Starting with NEWBOOLE, it has long been noted that in the use of LCS for tasks where there is an immediate

reward indicating correctness, the standard reinforcement learning approach can be altered. UCS [Bernado

Mansilla & Garrell, 2003] uses the accuracy calculation of AU-BOOLE to replace the standard running average

error update in XCS. That is, j = number of correct classifications/experience, with experience defines as the

number of times a rule has matched. Thereafter, Fj = (j)

 and the GA is run in the correct set [C], with deletion

a global operation based upon the size of [C] (Figure 6).

Figure 6: Schematic of UCS.

The main effect of the change to a supervised update is that UCS only maintains a set of rules which receive

high payoff, as opposed to XCS’s construction of a full state-action-reward map. As a consequence, UCS was

shown to learn more quickly than an equivalent XCS on a number of benchmark tasks. As well as the reduced

generalization task, it was also shown to learn more effectively due to the change in the fitness pressure for

certain types of problem from the simplified fitness function. UCS and XCS are shown to be competitive with a

number of well-known machine learning techniques over well-known real-world datasets.

In a few cases, XCS was found to outperform UCS on the real-world datasets and it was speculated this is due to

in part to a lack of fitness sharing within niches. Later inclusion of the same relative accuracy calculation into

UCS gives improved performance, particularly with unbalanced datasets [Orriols-Puig & Bernado Mansilla,

2008]. However, XCS remains a robust classification data mining algorithm (see [Fernandez et al., 2010]).

Like XCS, a number of techniques have been incorporated into UCS, such as the use of rank-based selection

(e.g., [Orriols-Puig & Bernado Mansilla, 2008]) and fuzzy logic (e.g., [Orriols-Puig et al., 2009]). It has also

been used within ensembles, including with the use of neural networks to provide the action (e.g., [Dam et al.,

2008]). Ideas from the wider ensemble/mixture-of-experts literature have also been used to understand and

refine UCS (e.g., [Edakunni et al., 2011]).

4.2 XCSC: Unsupervised Learning

Unsupervised learning describes those tasks under which structure is sought in unlabelled data without further

external input. Perhaps somewhat surprisingly, no previous suggestion of the use of LCS for such learning is

known in the literature until the work of Tammee et al. [2006; 2007] on clustering (see Figure 7). Clustering is

an important unsupervised learning technique where a set of data are grouped into clusters in such a way that

data in the same cluster are similar in some sense and data in different clusters are dissimilar in the same sense

(see [Xu & Wunsch, 2009] for an overview). Most clustering algorithms require the user to provide the number

of clusters, and the user in general has no idea about the number of clusters (e.g., see [Tibshirani et al., 2000]).

Hence this typically results in the need to make several clustering trials with different numbers of clusters from

1 to the square-root of the number of data points, and select the best clustering among the partitioning with

different number of clusters.

Tammee et al. show how the generalization mechanisms of XCS can be used to identify clusters – both their

number and description. Rules in their XCSC use an interval representation of the form {{c1 ,s1}, ….. {cd ,sd}},

where c is the interval’s range centre from [0.0,1.0] and s is the “spread” from that centre from the range (0.0,s0]

and d is a number of dimensions. Each interval predicates’ upper and lower bounds are calculated as follows: [ci

- si, ci + si]. If an interval predicate goes outside the problem space bounds, it is truncated. Rule fitness consists

of updating the matching error which is derived from the Euclidean distance with respect to the input x and c

in the condition of each member of the current [M] using the Widrow-Hoff delta rule with learning rate

j j + (
2/1

1

2)))(((

d

l

ljl cx - j)

The rest of XCS processing remains unchanged. Hence the set pressure encourages the evolution of rules which

cover many data points and the fitness pressure acts as a limit upon the separation of such data points, i.e., the

error.

Figure 7: Schematic of XCSC.

Tammee et al. [2006] began by using a slightly simplified version of XCS as the underlying LCS (YCS) [Bull,

2005], but found that XCS’s relative accuracy fitness function was more effective than a function directly

inversely proportional to error [Tammee et al., 2007]. Note this is similar to the aforementioned findings with

UCS [Orriols-Puig & Bernado Mansilla, 2008]. Moreover, since the 0 parameter controls the error threshold of

rules, Tammee et al. investigated the sensitivity of XCSC to its value by varying it. Their experiments show

that, if 0 is set high, e.g., 0.1, in less-separated data the contiguous clusters are covered by the same rules. They

therefore developed an adaptive threshold parameter scheme which uses the average error of the current [M]:

)/(][0 Mj N

Where j is the average error of each rule in the current match set and N[M] is the number of rules in the current

match set. This is applied before the fitness function calculations. Experimentally Tammee et al. found =1.2

was most effective for the problems they considered.

This work has recently been extended to include hierarchical cluster/rule merging and voting (e.g., [Qian et al.,

2013]).

4.3 XCSF: Function Learning

Wilson [1995] proposed that XCS could be modified to learn functions, i.e., problems of the general form

y=f(x), and subsequently presented XCSF [Wilson, 2001][Wilson, 2002]. Rules in XCSF typically use an

interval representation of the form {{l1 u1}, ….. {ld ,ud}}, where li (“lower”) and ui (“upper”) are integers. A

rule matches an input x with attributes xi if and only if li ≤ xi ≤ ui for all xi . Having first used the standard

prediction creation of XCS, Wilson introduces piecewise-linear approximators to each rule, i.e., functions of the

form h(x) = w0 + w1x1 + … wdxd. Rather than add the weights wj to the rule representation to be learned under

the GA, a variant of a simple gradient descent method is employed: Δwj = (η/|x’|
2
) (t - o)xj, where t is the target,

o is the output, and η is a learning rate.

Wilson shows the basic XCSF learning a sine function and multi-dimension root-mean-squared functions

wherein the local approximations are shown to be adaptive to the function being approximated such that the size

of the local interval responds to the curvature of the function. This increases efficiency and as well introduces

an additional kind of generalization. This has subsequently been explored extensively, using a variety of rule

condition representations and function approximation techniques (e.g., see [Lanzi et al., 2007][Butz et al.,

2008]). The theoretical underpinnings of XCS have also been extended to XCSF (e.g., [Stalph et al., 2012a]).

Figure 8: Schematic of XCSF.

Wilson [2002] extended the idea to propose a generalized rule format such that the prediction associated with a

state-action rule under reinforcement leaning is computed in the same way, as opposed to maintained as (an

adjusted) parameter (see also [Giani et al., 1995]). Again, this has been explored using a variety of rule

representations and approximators (e.g., see [Loiacono et al., 2009]). It can be noted that in rule representations

which can also provide memory through individual rule-internal structures, such as recurrent connections in a

network, this opens up new ways by which to solve non-Markov tasks (e.g., see [Preen & Bull, 2013]).

4.3 XACS: Model Learning

As noted above, Stolzmann [1998] presented an accuracy-based LCS in which rules are extended to predict the

subsequent sensory state from their use. That is, rules are of the general form “IF condition AND assertion

THEN effect”. The mechanism through which such rules are learned is based upon the theory of Anticipatory

Behavioural Control [Hoffmann, 1993] and not a simulated evolutionary process. The search algorithm, termed

the Anticipatory Learning Process (ALP), has thus far relied upon the traditional ternary alphabet {0,1,#} (see

[Gerard & Sigaud, 2001] for related systems). Butz et al. introduced the use of a niched GA alongside the ALP

to improve the generalization abilities of ACS, termed ACS2 (see [Butz, 2002] for full details). Whilst effective,

ACS2 was found to sometimes struggle to form both accurate environment models and state-action-reward

models simultaneously. Drawing on XCSF, ACS2 was subsequently extended in XACS [Butz & Goldberg,

2003] (figure 9).

XACS maintains the principle features of ACS(2), using the ALP to specialize rules when their anticipated

effect does not match the next state. As in ACS2, a # symbol in an effect indicates that the bit is not anticipated

to change in the next state, whereas defined bits are anticipated to change to that value (unlike ACS). The GA is

the same as in ACS2, using the time triggered scheme of XCS, with the mutation process only introducing #’s

and crossover only happening over conditions. Running alongside ACS2 is a variant of XCSF to learn the value

of states. The rules consist of a condition and prediction parameter, as in the first version of XCSF described

above. The XCSF component is used each time external reward is received from the environment, updating

predicted values using both its own current prediction and the model knowledge of the ACS2 component.

Figure 9: Schematic of XACS (without XCSF component).

Butz and Goldberg [2003] report improved performance over ACS2 in blocks world problems of varying sizes.

Benefits of the model include a mechanism through which to bias action selection such that those rules whose

anticipations are least accurate are chosen preferentially over a random action, the ability to learn multiple tasks

simultaneously over the same environment by including an XCSF component per task (see [Studley & Bull,

2006] for a related study), etc. Given the supervised learning-like nature of building anticipations, they have also

been learned in a version of XCSF using a neural network to predict the next state (e.g., [Bull et al., 2007]).

5. Conclusion

Architecturally, XCS can be traced from ANIMAT via ZCS, with GOFER’s triggered niche GA being included.

The use of accuracy began with CS-1, although it was focused on the highest reward per niche. Moreover,

XCS’s generalization pressure shares features with that in CS-1 since it is also based on accuracy and rate of

use. In CS-1 predicted rewards are only updated if they are accurate or below the current estimate, with action

and GA selection based upon this parameter: more accurate rules are more likely to reproduce. Rule ages are

reset after use and deletion is based upon age: more frequently used rules are less likely to be replaced. Thus

accurate, more general (frequently used) rules are propagated in CS-1. XCS combines both accuracy, in its pure

form, and frequency of use into the selection process of the GA. This creates a generalization pressure but,

importantly, also frees the deletion process of the GA to be used to maintain multiple niches in an emergent way

thereby addressing one of the main issues in CS-1 that Holland sought to tackle by switching to strength sharing

in his subsequent LCS. Much has subsequently been explored with XCS, and there remains much to explore.

XCS has been used effectively to control physical robots in continuous time and space where the action space

was discrete and relatively small (e.g., [Studley & Bull, 2005]). Wilson [2007] has presented a “generalized

classifier system” concept whereby LCS can work in a continuous-valued action space. Whilst studies have

shown progress in this area for regression problems (e.g., [Preen & Bull, 2013]), there is still more to be done

for reinforcement learning problems (e.g., [Casillas et a., 2007][Howard et al., 2009]).

As highlighted in [Bull, 2011], XCSC can in hindsight be viewed as a type of Artificial Immune System (AIS).

For nearly thirty years (starting with [Farmer et al., 1986]) similarities between LCS and AIS have periodically

been noted, but the two fields have developed independently. The use of selection within niches of co-active

rules is akin to the scheme used in a general class of AIS known as clonal selection algorithms (e.g., CLONALG

[De Castro & Von Zuben, 2002]). The use of a time-delayed evolutionary process is also similar to the dendritic

cell AIS (e.g., [Greensmith et al., 2008]). It can also be noted that the adaptive affinity threshold finding in

XCSC [Tammee et al., 2007] is much like the result reported in [Bezerra et al., 2005] with an AIS. A potential

area for future research would therefore appear to be to explore the cross-fertilization of mechanisms between

what are now two relatively mature fields (e.g., see [Timmis et al., 2008] for an overview of AIS).

LCS were presented as an architecture through which to study cognitive systems. Whilst the reinforcement

learning element has a clear connection to neuroscience (e.g., [Schultz, 1998]), the use of an evolutionary

process to build knowledge representations has lacked a strong connection. The general similarities between

LCS and artificial neural networks have long been noted (e.g., [Smith & Cribbs, 1994]), and as mentioned above

such networks have been used as rules, including spiking models (e.g. [Howard et al., 2010]). However, there

are suggestions that neurogenesis may be significant in adult learning (e.g., [Becker, 2005]) and that such

neurons may vary genetically upon production (e.g., [Coufal et al., 2009]). Selectionist models of brains, i.e.,

forms of neural Darwinism, continue to be developed (e.g., [Fernando et al., 2012]). It has recently been shown

[Stalph et al., 2012b] that XCSF can be very similar to the locally-weighted projection regression algorithm

[Vijayakumar et al., 2005], suggesting its rules may be seen to specify local receptive fields. Another potential

area for future research would therefore appear to be to move LCS closer to computational neuroscience.

References

Ahluwalia, M. & Bull, L. (1999) A Genetic Programming-based Classifier System. In W. Banzhaf et al. (eds)

GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann,

pp11-18.

Becker, S. (2005) A Computational Principle for Hippocampal Learning and Neurogenesis. Hippocampus 15

(6): 722–38.

Bernado Mansilla, E. & Garrell, J. (2003) Accuracy-Based Learning Classifier Systems: Models, Analysis and

Applications to Classification Tasks. Evolutionary Computation 11(3): 209-238.

Bezerra, G., Barra, T., de Castro, L. & Von Zuben (2005) Adaptive Radius Immune Algorithm for Data

Clustering. In C. Pilat et al. (eds) Proceedings of the 4
th

 International Conference on Artificial Immune

Systems. Springer, pp.290-303.

Bonelli, P., Parodi, A., Sen, S. & Wilson, S.W. (1990) NEWBOOLE: A Fast GBML System. In International

Conference on Machine Learning. Morgan Kaufmann, pp153-159.

Booker, L. (1982) Intelligent Behavior as an Adaptation to the Task Environment. Ph.D. Thesis, the University

of Michigan.

Booker, L.B. (1985) Improving the Performance of Genetic Algorithms in Classifier Systems. In J.J.

Grefenstette (ed) Proceedings of the First International Conference on Genetic Algorithms and their

Applications. Lawrence Erlbaum Associates, pp80-92.

Booker, L. (1988) Classifier Systems that Learn Internal World Models. Machine Learning 3: 161-192.

Booker, L. (1989) Triggered Rule Discovery in Classifier Systems. In J. Schaffer (ed) Proceedings of the

International Conference on Genetic Algorithms. Morgan Kaufmann, pp265-274.

Box, G. (1957) Evolutionary Operation: A Method for Increasing Industrial Productivity. Journal of Royal

Statistical Society C 6(2): 81-101.

Bull, L. (2004)(ed) Applications of Learning Classifier Systems. Springer.

Bull, L. (2005) Two Simple Learning Classifier Systems. In L. Bull & T. Kovacs (eds) Foundations of Learning

Classifier Systems. Springer, pp63-90.

Bull, L. (2009) On Dynamical Genetic Programming: Simple Boolean Networks in Learning Classifier Systems.

International Journal of Parallel, Emergent and Distributed Systems 24(5): 421-442

Bull, L. (2011) Towards a Mapping of Modern AIS and LCS. In P. Lio et al. (eds) Proceedings of the Tenth

International Conference on Artificial Immune Systems. Springer, pp371-382

Bull, L. (2014) Exploiting Generalisation Symmetries in Accuracy-based Learning Classifier Systems: An

Initial Study. http://arxiv.org/abs/1401.2949

Bull, L. & Hurst, J. (2002) ZCS Redux. Evolutionary Computation 10(2): 185-205.

Bull, L. & O'Hara, T. (2002) Accuracy-based Neuro and Neuro-Fuzzy Classifier Systems. In W.B.Langdon et

al. (eds) GECCO-2002: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan

Kaufmann, pp905-911

Bull, L. & Kovacs, T. (2005)(eds) Foundations of Learning Classifier Systems. Springer.

Bull, L., Lanzi, P-L. & O'Hara, T. (2007) Anticipation Mappings for Learning Classifier Systems. In

Proceedings of the IEEE Congress on Evolutionary Computation. IEEE Press, pp2133-2140

Bull, L., Studley, M., Bagnall, A. & Whittley, I. (2007) Learning Classifier System Ensembles with Rule

Sharing. IEEE Transactions on Evolutionary Computation 11(4): 496-502

Bull, L., Bernado Mansilla, E. & Holmes, J. (2008)(eds) Learning Classifier Systems in Data Mining. Springer.

Butz, M. (2002) Anticipatory Learning Classifier Systems. Kluwer.

Butz, M.V. (2006) Rule-based Evolutionary Online Learning Systems. Springer.

Butz, M.V. & Wilson, S.W. (2002) An algorithmic description of XCS. Soft Computing 6(3-4): 144-153

Butz, M.V. & Goldberg, D.E. (2003) Generalized State Values in an Anticipatory Learning Classifier System.

In Butz, M.V., Sigaud, O., & G´erard, P. (eds) Anticipatory Behavior in Adaptive Learning Systems.

Springer, pp. 282–301.

Butz, M.V., Kovacs, T., Lanzi, P-L & Wilson, S.W. (2004) Toward a Theory of Generalization and Learning in

XCS. IEEE Transactions on Evolutionary Computation 8(1): 28-46

Butz, M.V., Sastry, K. & Goldberg, D.E. (2005a) Strong, Stable, and Reliable Fitness Pressure in XCS due to

Tournament Selection. Genetic Programming and Evolvable Machines 6(1): 53-77

Butz, M.V., Goldberg, D. E. & Lanzi, P-L (2005b) Gradient Descent Methods in Learning Classifier Systems:

Improving XCS Performance in Multi-step Problems. IEEE Transactions on Evolutionary Computation 9(5):

452-473

Butz, M.V., Pelikan, M., Llora, X. & Goldberg, D.E. (2006) Automated Global Structure Extraction for

Effective Local Building Block Processing in XCS. Evolutionary Computation 14(3): 345-380

http://www.informatik.uni-trier.de/~ley/pers/hd/w/Wilson:Stewart_W=.html
http://www.informatik.uni-trier.de/~ley/db/journals/soco/soco6.html#ButzW02

Butz, M.V., Goldberg, D., Lanzi, P-L. & Sastry, K. (2007) Problem Solution Sustenance in XCS: Markov Chain

Analysis of Niche Support Distributions and the Impact on Computational Complexity. Genetic

Programming and Evolvable Machines 8(1): 5-37

Butz, M.V., Lanzi, P-L. & Wilson, S.W. (2008) Function Approximation with XCS: Hyperellipsoidal

Conditions, Recursive Least Squares, and Compaction. IEEE Trans. Evolutionary Computation 12(3): 355-

376.

Casillas, J. Carse, B. & Bull, L. (2007) Fuzzy XCS: a Michigan Genetic Fuzzy System. IEEE Transactions on

Fuzzy Systems 15(4): 536-550

Cliff, D. & Ross, S. (1995) Adding Temporary Memory to ZCS. Adaptive Behavior 3(2): 101-150.

Coufal, N. et al (2009) L1 Retrotransposition in Human Neural Progenitor Cells. Nature 460: 1127-1131.

Dam, H., Abbass, H., Lokan, C. & Yao, X. (2008) Neural-Based Learning Classifier Systems. IEEE

Transactions on Knowledge Data Engineering 20(1): 26-39

De Castro, L. & Von Zuben, F. (2002) Learning and Optimization using the Clonal Selection Principle. IEEE

Transactions on Evolutionary Computation 6(3): 239-251.

Dorigo, M. & Bersini, H. (1994) A Comparison of Q-learning and Classifier Systems. In D. Cliff, P. Husbands,

J-A. Meyer & S. W. Wilson (eds) From Animals to Animats 3: Proceedings of the Third International

Conference on Simulation of Adaptive Behaviour. MIT Press, pp248-255.

Drugowitsch, J. & Barry, A. (2005) XCS with Eligibility Traces. In H.G. Beyer et al. (eds) GECCO-2005:

Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, pp1851-1858

http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lanzi:Pier_Luca.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Wilson:Stewart_W=.html
http://www.informatik.uni-trier.de/~ley/db/journals/tec/tec12.html#ButzLW08

Edakunni, N., Brown, G. & Kovacs, T. (2011) Online, GA based Mixture of Experts : a Probabilistic Model of

UCS. In GECCO-2011: Proceedings of the Genetic and Evolutionary Computation Conference. ACM Press,

pp1267–1274.

Eiben, A. & Smith, J. (2003) Introduction to Evolutionary Computing. Springer.

Farley, B. & Clark, W. (1954) Simulation of Self-organizing Systems by Digital Computer. IRE Transactions

on Information Theory 4: 76-84.

Farmer, J.D., Packard, N., & Perelson, A. (1986) The Immune System, Adaptation and Machine Learning.

Physica D 22: 187-204.

Fernández, A., García, S., Luengo, J., Bernadó-Mansilla, E., & Herrera, F. (2010) Genetics-Based Machine

Learning for Rule Induction: State of the Art, Taxonomy, and Comparative Study. IEEE Transactions on

Evolutionary Computation 14(6): 913-941

Fernando, C., Szathmary, E. & Husbands, P. (2012) Selectionist and Evolutionary Approaches to Brain

Function: A Critical Appraisal. Frontiers in Computational Neuroscience 6(24).

Fraser, A. (1957) Simulation of Genetic Systems by Automatic Digital Computers. I. Introduction. Australian

Journal of Biological Sciences 10: 484-491.

Frey, P. & Slate, D. (1991) Letter Recognition using Holland-style Adaptive Classifiers. Machine Learning 6:

161-182.

Gererd, P. & Sigaud, O. (2001) YACS: Combining Dynamic Programming with Generalization in Classifier

Systems. In P-L. Lanzi, W. Stolzmann & S.W. Wilson (eds) Advances in Learning Classifier Systems:

Proceedings of the Third International Workshop on Learning Classifier Systems. Springer, pp52-69.

Giani, A., Baiardi, F. & Starita, A. (1995) PANIC: A Parallel Evolutionary Rule Based System. I, J. McDonnell,

R. Reynolds & D. Fogel (eds) Proceedings of the Fourth Annual Conference on Evolutionary Programming.

MIT Press, ppp753-772.

Goldberg, D. (1985) Genetic Algorithms and Rule Learning in Dynamic System Control. In J.J. Grefenstette

(ed) Proceedings of the First International Conference on Genetic Algorithms and their Applications.

Lawrence Erlbaum Associates, pp8-15.

Greensmith, J., Feyereisl, J. & Aickelin, U. (2008) DCA: Some Comparison. Evolutionary Intelligence 1(2): 85-

112.

Hartley, A. (1999) Accuracy-based Fitness Allows Similar Performance to Humans in Static and Dynamic

Classification Environments. In W. Banzhaf et al. (eds) GECCO-99: Proceedings of the Genetic and

Evolutionary Computation Conference. Morgan Kaufmann, pp266-273.

Hercog, L. & Fogarty, T.C. (2002) Coevolutionary Classifier Systems for Multi-Agent Simulation. In

Proceedings of the IEEE Congress on Evolutionary Computation. IEEE Press, pp1798-1803.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press.

Holland, J.H. (1976) Adaptation. In Rosen & Snell (eds) Progress in Theoretical Biology, 4. Plenum, pp263-

293.

Holland, J.H. (1980) Adaptive Algorithms for Discovering and using General Patterns in Growing Knowledge

Bases. International Journal of Policy Analysis and Information Systems 4(3): 245-268.

Holland, J. H. (1985) Properties of the Bucket Brigade. In J.J. Grefenstette (ed) Proceedings of the First

International Conference on Genetic Algorithms and their Applications. Lawrence Erlbaum Associates, pp1-

7.

Holland, J.H. (1986). Escaping brittleness: the possibilities of general-purpose learning algorithms applied to

parallel rule-based systems. In Michalski, Carbonell, & Mitchell (eds) Machine learning, an artificial

intelligence approach. Morgan Kaufmann, pp593-623.

Holland, J.H. (1990) Concerning the Emergence of Tag-Mediated Lookahead in Classifier Systems. Physica D

42: 188-201.

Holland, J.H. & Reitman, J.H. (1978) Cognitive Systems Based in Adaptive Algorithms. In Waterman & Hayes-

Roth (eds) Pattern-directed Inference Systems. Academic Press, pp313-329.

Holland, J.H., Holyoak, K.J., Nisbett, R.E. & Thagard, P.R. (1986) Induction: Processes of Inference, Learning

and Discovery. MIT Press.

Howard, D., Bull, L. & Lanzi, P-L. (2009) Continuous Actions in Continuous Space and Time using Self-

Adaptive Constructivism in Neural XCSF. In GECCO-2009: Proceedings of the Genetic and Evolutionary

Computation Conference. ACM Press, pp1219-1226.

Howard, D., Bull, L. & Lanzi, P-L. (2010) A Spiking Neural Representation for XCSF. In Proceedings of the

IEEE Congress on Evolutionary Computation. IEEE Press, pp1-8.

Hurst, J. & Bull, L. (2002) A Self-Adaptive XCS. In P-L. Lanzi, W. Stolzmann & S.W. Wilson (eds) Advances

in Learning Classifier Systems: Proceedings of the Fourth International Workshop on Learning Classifier

Systems. Springer, pp57-73.

Iqbal, M., Browne, W. & Zhang, M. (2013) Evolving optimum populations with XCS classifier systems - XCS

with code fragmented action. Soft Computing 17(3): 503-518

Iqbal, M., Browne, W. & Zhang, M. (2014) Reusing Building Blocks of Extracted Knowledge to Solve

Complex, Large-Scale Boolean Problems. IEEE Transactions on Evolutionary Computation.

http://www.informatik.uni-trier.de/~ley/pers/hd/i/Iqbal_0001:Muhammad.html
http://www.informatik.uni-trier.de/~ley/pers/hd/z/Zhang:Mengjie.html

Kovacs, T. (1997) XCS Classifier System Reliably Evolves Accurate, Complete, and Minimal Representations

for Boolean Functions. In Roy, Chawdhry & Pant (eds) Soft Computing in Engineering Design and

Manufacturing. Springer, pp59–68.

Lanzi, P-L. (2008) Learning Classifier Systems: Then and Now. Evolutionary Intelligence 1(1): 63-82.

Lanzi, P-L & Perrucci, A. (1999) Extending the Representation of Classifier Conditions Part II: From Messy

Coding to S-Expressions. In W. Banzhaf et al. (eds) GECCO-99: Proceedings of the Genetic and

Evolutionary Computation Conference. Morgan Kaufmann, pp345-352.

Lanzi, P-L & Riolo, R. (2000) A Roadmap to the Last Decade of Learning Classifier System Research. In P-L.

Lanzi, W. Stolzmann & S.W. Wilson (eds) Learning Classifier Systems: From Foundations to Applications.

Springer, pp33-62.

Lanzi, P-L. & Wilson, S.W. (2000) Toward Optimal Classifier System Performance in Non-Markov

Environments. Evolutionary Computation 8(4): 393-418

Lanzi, P-L, Loiacono, D., Wilson, S.W. & Goldberg, D. (2007) Generalization in the XCSF Classifier System:

Analysis, Improvement, and Extension. Evolutionary Computation 15(2): 133-168

Loiacono, D. & Lanzi, P-L. (2009) Recursive Least Squares and Quadratic Prediction in Continuous Multistep

Problems. In J. Bacardit et al. (eds) Learning Classifier Systems: Revised Selected Papers. Springer, pp70-86

Orriols-Puig, A. & Bernado Mansilla, E. (2008) Revisiting UCS: Description, Fitness Sharing, and Comparison

with XCS. In J. Bacardit et al. (eds) Learning Classifier Systems: Revised Selected Papers. Springer, pp96-

116.

Orriols-Puig, A., Casillas, J. & Bernadó Mansilla, E. (2009) Fuzzy-UCS: A Michigan-Style Learning Fuzzy-

Classifier System for Supervised Learning. IEEE Transactions on Evolutionary Computation 13(2): 260-283.

http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lanzi:Pier_Luca.html
http://www.informatik.uni-trier.de/~ley/db/journals/ec/ec8.html#LanziW00
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Loiacono:Daniele.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Goldberg:David_E=.html
http://www.informatik.uni-trier.de/~ley/db/journals/ec/ec15.html#LanziLWG07

Preen, R. & Bull, L. (2013) Dynamical Genetic Programming in XCSF. Evolutionary Computation 21(3): 361-

388.

Qian, L., Shi, Y., Gao, Y. & Yin, H. (2013) Voting-XCSc: A Consensus Clustering Method via Learning

Classifier System. In H. Yin et al. (eds) Intelligent Data Engineering and Automated Learning – IDEAL.

Springer, pp603-610.

Riolo, R. (1991) Lookahead Planning and Latent Learning in a Classifier System. In J-A. Meyer & S. W.

Wilson (eds) From Animals to Animats: Proceedings of the First International Conference on Simulation of

Adaptive Behaviour. MIT Press, pp316-326.

Roberts, G. (1993) Dynamic Planning for Classifier Systems. In S. Forrest (ed), Proceedings of the 5
th

International Conference on Genetic Algorithms. Morgan Kaufmann, pp231-237.

Samuel, A.L. (1959) Some Studies in Machine Learning using the Game of Checkers. IBM Journal of Research

and Development 3: 211-229.

Samuel, A.L. (1967) Some Studies in Machine Learning using the Game of Checkers. II. Recent Progress. IBM

Journal of Research and Development 11: 601-617.

Schultz, W. (1998) Predictive Reward Signal of Dopamine Neurons. Journal of Neurophysiology 68: 1190-

1208.

Seward, J. (1949) An Experimental Analysis of Latent Learning. Journal of Experimental Psychology 39: 177-

186.

Shannon, C. (1950) Programming a Computer for Playing Chess. Philosophical Magazine 41: 256-275.

Smith, S.F. (1980) A Learning System Based on Genetic Adaptive Algorithms. PhD Thesis, University of

Pittsburgh.

Smith, R. & Cribbs, H. (1994) Is a Learning Classifier System a Type of Neural Network? Evolutionary

Computation 2(1): 19-36

Smith, R., Jiang, M., Bacardit, J., Stout, M., Krasnogor, N. & Hirst, J. (2010) A Learning Classifier System with

Mutual-Information-based Fitness. Evolutionary Intelligence 3(1): 31-50.

Stalph, P., Llorà, X., Goldberg, D. & Butz, M.V. (2012a) Resource Management and Scalability of the XCSF

Learning Classifier System. Theoretical Computer Science 425: 126-141

Stalph, P., Rubinsztajin, J., Sigaud, O. & Butz, M.V. (2012b) Function Approximation with LWPR and XCSF:

A Comparative Study. Evolutionary Intelligence 5(2): 103-116.

Stolzmann, W. (1998) Anticipatory Classifier Systems. In Koza et al. (eds.) Genetic Programming 1998:

Proceedings of the Third Annual Conference, Morgan Kaufmann, pp658-654.

Stone, C. & Bull, L. (2003) For Real! XCS with Continuous-Valued Inputs. Evolutionary Computation 11(3):

299-336

Stone, C. & Bull, L. (2005) Comparing XCS and ZCS on Noisy Continuous-Valued Environments. Technical

Report: UWELCSG05-002 (http://www.cems.uwe.ac.uk/lcsg)

Studley, M. & Bull, L. (2005) X-TCS: Accuracy-based Learning Classifier System Robotics. In Proceedings of

the IEEE Congress on Evolutionary Computation. IEEE, pp2099-2106

Studley, M. & Bull, L. (2006) Using the XCS Classifier System for Multi-objective Reinforcement Learning

Problems. Artificial Life 13(1): 69-86

Sutton, R. & Barto, A. (1981) Toward a Modern Theory of Adaptive Networks: Expectation and Prediction.

Psychological Review 88: 135-170.

Sutton, R. & Barto, A. (1998) Reinforcement Learning. MIT Press.

Tammee, K., Bull, L. & Ouen, P. (2006) A Learning Classifier System Approach to Clustering. In Proceedings

of the 6th International Conference on Intelligent Systems Design and Applications. IEEE, pp621-626.

Tammee, K., Bull, L. & Ouen, P. (2007) Towards Clustering with XCS. In D. Thierens et al. (eds) GECOO-

2007: Proceedings of the Genetic and Evolutionary Computation Conference. ACM Press, pp1854-1860.

Thorndike, E. (1911) Animal Intelligence. Macmillan Company.

Tibshirani, R., Walther, G., & Hastie, T. (2000) Estimating the Number of Clusters in a Dataset Via the Gap

Statistic. Journal of the Royal Statistical Society, B, 63: 411-423.

Timmis, J., Andrews, P., Owens, N. & Clark, E. (2008) An Interdisciplinary Perspective on Artificial Immune

Systems. Evolutionary Intelligence 1(1): 5-26

Tomlinson, A. & Bull, L. (2002) An Accuracy-Based Corporate Classifier System. Soft Computing 6(3-4): 200-

215

Tran, T., Sanza, C., Duthen, Y. & Nguyen, D. (2007) XCSF with Computed Continuous Action. In D. Thierens

et al. (eds) GECCO-07: Proceedings of the Genetic and Evolutionary Computation Conference. ACM Press,

pp1861-1868.

Turing, A. (1948) Intelligent Machinery. Reprinted in: Copeland, J. (2004) The Essential Turing. Oxford,

pp395-432.

Urbanowicz, R. & Moore, J. (2009) Learning Classifier Systems: A Complete Introduction, Review and

Roadmap. Journal of Artificial Evolution & Applications. 1:1-25

Valenzuela-Rendón, M. (1991) The Fuzzy Classifier System: A Classifier System for Continuously Varying

Variables. In R. Belew & L. Booker (eds) Proceedings of the 4th International Conference on Genetic

Algorithms. Morgan Kaufmann, pp. 346–353.

Venturini, G. (1994) Apprentissage Adaptatif et Apprentissage Supervisé par Algorithme Génétique. Thèse de

Docteur en Science (Informatique), Université de Paris-Sud.

Vijayakumar, S., D’Souza, A. & Schall, S. (2005) Incremental On-line Learning in High Dimensions. Neural

Computing 17(12): 2602-2634.

Watkins, C.J. (1989) Learning from Delayed Rewards. Ph.D. Thesis, Cambridge University.

Wilson, S.W. (1985) Knowledge Growth in an Artificial Animal. In J.J. Grefenstette (ed) Proceedings of the

First International Conference on Genetic Algorithms and their Applications. Lawrence Erlbaum Associates,

pp16-23.

Wilson, S.W. (1987) Classifier Systems and the Animat Problem. Machine Learning 2: 219-

 228.

Wilson, S.W. (1994) ZCS: A Zeroth-level Classifier System. Evolutionary Computation 2(1):1-18.

Wilson, S.W. (1995) Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2): 149-76.

Wilson, S.W. (1998) Generalization in the XCS Classifier System. In Koza et al. (eds.) Genetic Programming

1998: Proceedings of the Third Annual Conference, pp. 322-334. Morgan Kaufmann.

Wilson, S.W. (2001) Function Approximation with a Classifier System. In L. Spector et al. (eds) GECCO-01:

Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, pp974-981.

Wilson, S. W. (2002) Classifiers that Approximate Functions. Natural Computing 1(1): 211-233.

Wilson, S.W. (2007) Three Architectures for Continuous Action. In J. Bacardit et al. (eds) Learning Classifier

Systems: Revised Selected Papers. Springer, pp239-257.

Wilson, S.W. (2008) Classifier Conditions using Gene Expression Programming. In J. Bacardit et al. (eds)

Learning Classifier Systems: Revised Selected Papers. Springer, pp206-217.

Wilson, S.W. & Goldberg, D.E. (1989) A critical review of classifier systems. In J. Schaffer (ed) Proceedings

of the 3
rd

 International Conference on Genetic Algorithms, Morgan Kauffman, pp244-255.

Wyatt, D. & Bull, L. (2004) A Memetic Learning Classifier System for Describing Continuous-Valued Problem

Spaces. In N. Krasnagor, W. Hart & J. Smith (eds) Recent Advances in Memetic Algorithms. Springer,

pp355-396

Xu, R. & Wunsch, D. (2009) Clustering. IEEE Press.

