137 research outputs found

    Peeking beyond peaks:Challenges and research potentials of continuous multimodal multi-objective optimization

    Get PDF
    Multi-objective (MO) optimization, i.e., the simultaneous optimization of multiple conflicting objectives, is gaining more and more attention in various research areas, such as evolutionary computation, machine learning (e.g., (hyper-)parameter optimization), or logistics (e.g., vehicle routing). Many works in this domain mention the structural problem property of multimodality as a challenge from two classical perspectives: (1) finding all globally optimal solution sets, and (2) avoiding to get trapped in local optima. Interestingly, these streams seem to transfer many traditional concepts of single-objective (SO) optimization into claims, assumptions, or even terminology regarding the MO domain, but mostly neglect the understanding of the structural properties as well as the algorithmic search behavior on a problem's landscape. However, some recent works counteract this trend, by investigating the fundamentals and characteristics of MO problems using new visualization techniques and gaining surprising insights. Using these visual insights, this work proposes a step towards a unified terminology to capture multimodality and locality in a broader way than it is usually done. This enables us to investigate current research activities in multimodal continuous MO optimization and to highlight new implications and promising research directions for the design of benchmark suites, the discovery of MO landscape features, the development of new MO (or even SO) optimization algorithms, and performance indicators. For all these topics, we provide a review of ideas and methods but also an outlook on future challenges, research potential and perspectives that result from recent developments.</p

    Static and Dynamic Multimodal Optimization by Improved Covariance Matrix Self-Adaptation Evolution Strategy with Repelling Subpopulations

    Get PDF
    The covariance matrix self-adaptation evolution strategy with repelling subpopulations (RS-CMSA-ES) is one of the most successful multimodal optimization (MMO) methods currently available. However, some of its components may become inefficient in certain situations. This study introduces the second variant of this method, called RS-CMSA-ESII. It improves the adaptation schemes for the normalized taboo distances of the archived solutions and the covariance matrix of the subpopulation, the termination criteria for the subpopulations, and the way in which the infeasible solutions are treated. It also improves the time complexity of RS-CMSA-ES by updating the initialization procedure of a subpopulation and developing a more accurate metric for determining critical taboo regions. The effects of these modifications are illustrated by designing controlled numerical simulations. RS-CMSA-ESII is then compared with the most successful and recent niching methods for MMO on a widely adopted test suite. The results obtained reveal the superiority of RS-CMSA-ESII over these methods, including the winners of the competition on niching methods for MMO in previous years. Besides, this study extends RS-CMSA-ESII to dynamic MMO and compares it with a few recently proposed methods on the modified moving peak benchmark functions

    A Decomposition-based Large-scale Multi-modal Multi-objective Optimization Algorithm

    Full text link
    A multi-modal multi-objective optimization problem is a special kind of multi-objective optimization problem with multiple Pareto subsets. In this paper, we propose an efficient multi-modal multi-objective optimization algorithm based on the widely used MOEA/D algorithm. In our proposed algorithm, each weight vector has its own sub-population. With a clearing mechanism and a greedy removal strategy, our proposed algorithm can effectively preserve equivalent Pareto optimal solutions (i.e., different Pareto optimal solutions with same objective values). Experimental results show that our proposed algorithm can effectively preserve the diversity of solutions in the decision space when handling large-scale multi-modal multi-objective optimization problems.Comment: 8 pages, 8 figures, 3 tables. Accepted by the 2020 IEEE Congress on Evolutionary Computation (IEEE CEC

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques
    • …
    corecore