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A B S T R A C T

Multi-objective (MO) optimization, i.e., the simultaneous optimization of multiple conflicting objectives, is
gaining more and more attention in various research areas, such as evolutionary computation, machine learning
(e.g., (hyper-)parameter optimization), or logistics (e.g., vehicle routing). Many works in this domain mention
the structural problem property of multimodality as a challenge from two classical perspectives: (1) finding all
globally optimal solution sets, and (2) avoiding to get trapped in local optima. Interestingly, these streams seem
to transfer many traditional concepts of single-objective (SO) optimization into claims, assumptions, or even
terminology regarding the MO domain, but mostly neglect the understanding of the structural properties as
well as the algorithmic search behavior on a problem’s landscape. However, some recent works counteract this
trend, by investigating the fundamentals and characteristics of MO problems using new visualization techniques
and gaining surprising insights.

Using these visual insights, this work proposes a step towards a unified terminology to capture multi-
modality and locality in a broader way than it is usually done. This enables us to investigate current research
activities in multimodal continuous MO optimization and to highlight new implications and promising research
directions for the design of benchmark suites, the discovery of MO landscape features, the development of new
MO (or even SO) optimization algorithms, and performance indicators. For all these topics, we provide a review
of ideas and methods but also an outlook on future challenges, research potential and perspectives that result
from recent developments.
1. Introduction

Multi-objective optimization (MOO) (Miettinen, 1998) has become
one of the most important research areas in evolutionary computation
over the last decades (van Veldhuizen, 1999; Deb, 2001; Coello Coello
et al., 2007). As MOO aims at the simultaneous optimization of multiple
(at least two) and contradicting objectives, multi-objective (MO) opti-
mization problems (MOPs) mainly challenge the selection mechanism
of the original single-objective (SO) evolutionary loop (Beyer, 2001).
Instead of a single optimum or few equivalent optima in case of
multimodal optimization, MOPs have incomparable optimal solutions,
i.e., a set of optimal trade-off solutions, which is called Pareto set
(also known as global efficient set). Thus, evolutionary multi-objective
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algorithms (EMOAs) – i.e., evolutionary algorithms (EAs) that aim
at the optimization of MOPs – are required to converge to optimal
solutions and simultaneously need to ensure, that all – or at least a
diverse set of – solutions are found.

For many years, the research on solving MOPs by using evolutionary
approaches focused on the development of algorithms and their exper-
imental validation (Schaffer, 1985; Deb et al., 2002; Emmerich et al.,
2005; Zhang and Li, 2007; Emmerich and Deutz, 2018; Coello Coello
et al., 2019). Specifically in the domain of continuous multi-objective
optimization and after the early steps in algorithm development, the
problems themselves became an important branch of research. Inspired
by the methodological advances in the SO domain of evolutionary
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computation over the last decades, several benchmark suites (Zitzler
et al., 2000; Deb et al., 2005; Tušar et al., 2016; Yue et al., 2019) were
developed. Based on those benchmarks, the fine tuning of algorithmic
parameters (see also algorithm configuration (Blot et al., 2016; López-
Ibáñez et al., 2016; Belkhir et al., 2017; Eggensperger et al., 2019))
became an important field of investigation. During these steps in the
community’s advancement, many notions, insights, challenges, and
strategies from the traditional field of SO optimization (SOO) diffused
into the field of continuous MOO (as it also did for the discrete domain).

One of these aspects and considered challenges is multimodality
(Preuss, 2015), i.e., the existence of multiple global and/or local op-
tima. Multiple global optima are solutions, which occur in different
positions in the decision space but whose objective values are of
optimal quality. Local optima are solutions that are best within a
certain neighborhood but do not necessarily have optimal objective
values. Consequently in SOO, the challenge of multimodality can be
categorized into two (not necessarily disjoint) streams: (1) due to the
existence of multiple basins of attractions, multimodality is regarded as
an obstacle for algorithms trying to reach a global optimum; (2) due to
the existence of multiple (globally) optimal solutions, it is associated
with the search for diverse solutions (in decision space) that are of
similar quality (measured in objective space). While the first aspect –
avoiding to get stuck – is a difficulty for algorithm design in general, the
latter aspect – finding all optimal solutions – is essential for practical
applications. For instance, when a globally optimal solution cannot be
realized, another global solution with a different parametrization but
similar quality, may become of major interest.

Similar streams can be observed for multimodality in continuous
MOO. Most of the algorithmic development dedicated to multimodality
is rather recent (Tanabe and Ishibuchi, 2020) and focuses on finding
many or all Pareto optimal solutions in decision space. The main
challenge considered in these approaches is to find all globally optimal
solutions in decision space, even if they map to the same solutions,
see Fig. 1 (left side). This could be termed multiglobal optimization
as the challenge is to find and preserve multiple global optima in a
multimodal environment.

The other perspective on multimodality – not getting trapped –
is implicitly considered in all MOO tasks.1 All approaches – whether
they strive for preserving diversity in decision space or not – assume
that locally optimal solutions may pose a challenge for algorithmic
convergence to global optimality (Deb, 1999) (see also right side of
Fig. 1 for a visual notion of this perspective). Whereas the existence
of traps due to multimodality is often inherent in discrete optimiza-
tion problems (Liefooghe et al., 2018c; Paquete et al., 2004, 2007a;
Liefooghe et al., 2018a), it is less clear in the continuous case. In
fact, for continuous problems in (evolutionary) MO optimization, the
properties (and challenges) of multimodality are rather transferred
from SO optimization than understood in the context of MOO.

Many designers of early continuous MO benchmarks and/or algo-
rithms assumed similarities to known and widely accepted effects from
SO optimization. They thus transferred the common understanding of
multimodality – local optima are traps for local search methods and
sometimes also major obstacles for global optimizers such as evolu-
tionary algorithms (EAs) – to MOO. As a result, benchmark designers
regularly integrate multimodality into test problems (with the aim
of posing challenging problems) and algorithm engineers either rely
on the global search behavior of EAs or try to tune their algorithms
to avoid these traps. Our impression is, however, both groups often
consider multimodality as major problem without knowing what it
exactly means in the context of continuous MO landscapes.

1 If it is not mentioned explicitly in this context, it is integral part of the
ecision to tackle a problem using evolutionary algorithms. Otherwise, local
ptimizers would suffice for solving such problems.
2

Recently, some works have tried to close this gap using visual
methods for investigating continuous multimodal landscapes (Kerschke
and Grimme, 2017; Schäpermeier et al., 2020). Similarly, first the-
oretical formulations of localness (Kerschke et al., 2016, 2019b), or
investigations of algorithm behavior and new design principles (Wang
et al., 2017a,b; Grimme et al., 2019a,b) appeared and started to be-
come a research ‘‘streamlet’’ in continuous MOO. Literally, these new
visualizations of localness in continuous MOO can provide fundamen-
tal insights into continuous MO landscapes and thereby enable the
extraction of algorithmic implications for multimodal and multiglobal
MOO.

The contribution of this work is twofold: on the one hand, it
provides a comprehensive overview on the research activities in the
field of evolutionary optimization for continuous multimodal (and
multiglobal) MOPs and highlights algorithmic development, visual-
ization approaches, and benchmarking. On the other hand, it details
new insights into the structure of continuous multimodal problem
landscapes, points to possible misconceptions, disruptive insights, as
well as existing gaps.

However, beyond that, the paper should be considered as a position
paper, which discusses the misperceptions and challenges, as well as
the perspective research potential of multimodality in the continuous
MOO domain. Based on very recent – and for many people probably
still surprising – visual insights into the structure and properties of con-
tinuous multimodal problem landscapes, we highlight some promising
directions for future research. We are convinced that what is known of
multimodality (in the broader sense) in MOO today is only a starting
point for new research in benchmarking, landscape analysis, algorithm
development (notably in MO and SO optimization), as well as in theory.
In order to enable future discussion, we first propose to extend the
terminology of solution efficiency for continuous multimodal MOO
derived from observations in problem landscapes. This terminology
enables the community to address and distinguish local from global effi-
cient sets (the latter are usually called Pareto set) in a more precise way.
Thereafter, we address the research areas of benchmarking, landscape
analysis, algorithms, and performance indicators to identify possible
future trends in research on MOO, as well as potentially promising
paths to follow.

Specifically, Section 2 summarizes the basic and well-known con-
cepts of MOO using current terminology, while Section 3 provides an
extended terminology to capture localness and related properties for
MOO in a formal way. This is complemented by Section 4, which dives
into available methods for visualizing the landscapes of continuous
MO problems and provides an overview of very recent visualization
techniques that allow us to demonstrate the previously defined local
properties of MO landscapes. Section 5 details the promising areas of
research that are directly related to the new terminology and visual in-
sights. Section 5.1 revisits the available MO test suites and, at the same
time, offers the opportunity to (also visually) reflect on their MOPs
(along with their structural characteristics). This paves the ground
for a discussion of MOP landscapes and perspectives on landscape
analysis in MOO in Section 5.2. Section 5.3 addresses modern trends
and perspectives in algorithm development, while Section 5.4 considers
the implications of multimodality on performance measurement. Note
that each subsection in Section 5 comprehensively investigates the
literature and subsequently highlights possible new directions. Finally,
Section 6 provides a concluding argument, why multimodality is able
to push the entire (evolutionary) multi-objective optimization (EMO)
community forward.

2. Preliminaries on multi-objective optimization

In this section, we briefly introduce the classical and fundamental
terminologies, which commonly describe multi-objective optimization

problems in the evolutionary computation literature (Coello Coello



Computers and Operations Research 136 (2021) 105489C. Grimme et al.

o

e
s
o
t
t
o
b

D
o
f

𝐟

Fig. 1. Different perceptions of multimodality in the MO context. Left: A multiglobal perspective, where diverse solutions from the decision space map to the same image in
bjective space (i.e., a surjection). Right: A second perspective on multimodality with locally optimal solutions in decision space that correspond to (separate) dominated fronts.
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t al., 2007), and which have been adapted from classical operations re-
earch literature (Miettinen, 1998). Its usage is rooted in the early days
f algorithm development, when the focus of MOO was on transferring
he single-objective evolutionary loop to the domain of multiple objec-
ives. Back then, the central problem was that of modeling the selection
perator, which was required to allow (if possible direct) comparison
etween solutions to select the best and reject the dominated ones.

efinition 1 (Multi-objective Optimization Problem). A multi-objective
ptimization problem (MOP) is commonly denoted as a vector-valued
unction

∶  → R𝑚, 𝐱 ↦
(

𝑓1(𝐱), 𝑓2(𝐱),… , 𝑓𝑚(𝐱)
)⊤,

with 𝑚 real-valued single-objective functions 𝑓𝑖 ∶  → R, 𝑖 = 1,… , 𝑚,
which are to be optimized simultaneously.

As a consequence, the domination of solutions over others is not
as simple to realize as in SO optimization. Further, in the herein
considered scenario of continuous MOO, the MOP’s search space  is
also real-valued, i.e.,  ⊆ R𝑛.

In contrast to a totally ordered set (R,≤) in SO optimization, with
its natural total order ≤ on R, the set of solution candidates of a MOP
follows the weak Pareto order ⪯ on R𝑚, which is defined as follows:

Definition 2 (Pareto Order or Pareto Dominance). Let 𝐚 = (𝑎1,… , 𝑎𝑚) ∈
R𝑚 and 𝐛 = (𝑏1,… , 𝑏𝑚) ∈ R𝑚. We say 𝐚 weakly dominates 𝐛 (written as
𝐚 ⪯ 𝐛), if and only if 𝑎𝑖 ≤ 𝑏𝑖 for all 𝑖 = 1,… , 𝑚. Then the Pareto order ≺
on R𝑚 is defined as follows: 𝐚 dominates 𝐛 (𝐚 ≺ 𝐛), if and only if 𝐚 ⪯ 𝐛
and 𝐚 ≠ 𝐛. The weak Pareto order can also be extended to sets of points:
for 𝐴,𝐵 ⊆ R𝑚, 𝐴 weakly dominates 𝐵, if and only if ∀𝐛 ∈ 𝐵 ∃𝐚 ∈ 𝐴 such
that 𝐚 ⪯ 𝐛. The order ≺ can be generalized similarly: 𝐴 dominates 𝐵, if
and only if ∀𝐛 ∈ 𝐵 ∃𝐚 ∈ 𝐴 such that 𝐚 ≺ 𝐛.

As a consequence of this order, the solution of a MOP is not a single
(or equally performing set of) globally optimal solution(s), but a set of
incomparable, i.e., globally non-dominated solutions. They form a set
of efficient solutions in decision space and are called Pareto set, while
the image of this set represents the optimal trade-off between objectives
and is called Pareto front.

Definition 3 (Pareto Set and Pareto Front). A point 𝐱 ∈  is called a
globally efficient point of  (or of 𝐟) if there is no point �̃� ∈  such
that 𝐟 (�̃�) ≺ 𝐟 (𝐱). The set of all globally efficient points of  is termed
Pareto set (or globally efficient set) of 𝐟 and denoted by E. The image
of E under 𝐟 is called the Pareto front of 𝐟 and denoted by 𝐟 (E).

Essentially, Definition 3 states that a point is globally optimal or
efficient, if it is not dominated by any other point in  w.r.t. the
Pareto dominance. For many years, in the evolutionary multi-objective
optimization (EMO) community the ‘‘hunt’’ for the best Pareto front
approximation was a predominant topic. A plethora of algorithms,
selection mechanisms, benchmarks, and performance measures were
designed to get closer to the true Pareto front, achieve the best di-
versity, and measure whether real-world as well as artificial problems
could be adequately solved. Also challenges induced by localness were
3

considered.
However, in order to define local optimality, a definition of localness
based on the concept of neighborhood in the search space is needed.
For isolated points, the only relevant neighborhood coincides with the
point itself, and thus an isolated point is trivially a local efficient point
(defined in Section 3). As  ⊆ R𝑛, we define localness by means of
istances in the Euclidean space. Intuitively, a neighborhood of a point
s any set containing the point such that you can walk from the point
‘some distance’’ in any direction without leaving the set. Classically, a
eighborhood of a point in spaces equipped with a distance function
s modeled by (a) an 𝜀-ball containing the point, or, more generally,
b) any set which contains (or is equivalent to) an open set containing
he point. Similarly, in the MO sense, a point can be called locally

optimal or efficient, if it is not dominated by any of the points from
its neighborhood.

Given additional restrictions on the class of considered functions,
local optimality can be related to various other conditions. In case of
differentiable objective functions, which are the focus of this work, the
so-called Fritz John conditions (John, 2014) imply a necessary condition
for local optimality. In the unconstrained case they read ∃𝝀 ∶ 𝝀 ≥
0 ∧ 𝝀 ≠ 0, and w.l.o.g. ∑𝑚

𝑖=1 𝜆𝑖 = 1, such that ∑𝑚
𝑖=1 𝜆𝑖∇𝑓𝑖(𝑥) = 0. In

case of locally convex objective functions, (i) these conditions are also
sufficient, and (ii) these necessary and sufficient conditions for local
optimality are termed Karush Kuhn Tucker (KKT) conditions (Miettinen,
1998; Hillermeier, 2001).

Efficient points are interpreted as solutions for which there exists
a weighted linear scalarization with non-negative weights (and at
least one positive weight) such that the point under investigation is
a local minimum. In most practical cases the conditions need to be
extended by inequality constraints, such as box-constraints, as many
local optima occur at constraint boundaries. For the full KKT conditions
and their interpretation we refer the interested reader to the standard
literature (Miettinen, 1998).

Interestingly, although the concept of localness is present in EMO
and many algorithms implicitly try to solve benchmarks that explicitly
integrate localness, until recently almost no insight into the actual MO
landscapes – and thus hardly any interpretation of their shapes and
characteristics – existed. As a consequence, visualization, algorithmic
development, benchmark design and other areas concentrated on the
‘‘classical’’ Pareto front (and sometimes the Pareto set) for investigating
the ‘‘landscape’’ of MOPs.

3. Refining definitions and notions of localness in continuous
MOO

As a starting point for our following discussion, we argue that
the classically used terminology in the EMO domain is currently not
capable of capturing all expected properties of functional landscapes
that we are used to from analogies in the context of single-objective
optimization. If we speak of ‘‘Pareto optimality’’, ‘‘Pareto front’’, or
‘‘Pareto set’’ we usually refer to global optimality. Transferring these
terms directly to the local structures – as, e.g., done in Liu et al. (2019) –
and thus speaking of a ‘‘local Pareto set’’, lacks mathematical rigor and
thereby would lead to potential confusion. For instance, in Liu et al.

(2019), the notion of localness is understood via the set dominance
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relation in the objective space, i.e., the image of the global Pareto set
(strictly) dominates that of a local Pareto set. Plausible as it seems, this
notion brings in extra confusion when, for instance, if the pre-image
of the (global) Pareto set is disconnected, which contradicts what we
typically conceive. While plausible, this notion introduces additional
confusion when, for instance, the pre-image of the (global) Pareto set is
disconnected. This is contrary to what we normally conceive. Likewise,
it is not (yet) accepted throughout the community to speak of efficiency
instead.

In order to facilitate a concise wording on continuous multimodal
MOO for the following sections – and maybe also as consolidation of
available notions (Custódio and Madeira, 2018; Liefooghe et al., 2018c;
Kerschke et al., 2016) for future discussions in the EMO domain –
we provide some definitions and terminology that pick up the term
of efficiency in the global and local sense, and use those to extend the
current notion of optimality in the MO domain. Thereby, we specifically
address multimodality in a broader sense than with a mere focus on
multiple global optima (as done in Liu et al., 2018b). Nonetheless,
the multi-global view is certainly a practically important aspect, even
if not explicitly defined as part of our formal consideration. We will
address this important area in Section 5.3 in more detail and from
an algorithmic perspective. Note further that we do not strive for
reinventing notions of localness — those are already discussed in early
theoretical works that deal with local efficiency in MOO and aim for
first and second order optimality criteria (e.g., refer to Wan, 1975; Van
Geldrop, 1980; Jiménez, 2002).

In general, multimodal optimization problems are defined as prob-
lems that have more than one locally and/or globally efficient point (or
both). The localness of the latter can also be defined by means of an
open set in  .

Definition 4 (Locally Efficient Point). A point 𝐱 ∈  is called a locally
fficient point of  (or of 𝐟) if there is an open set 𝑈 ⊆  with 𝐱 ∈ 𝑈
nd there is no point �̃� ∈ 𝑈 such that 𝐟 (�̃�) ≺ 𝐟 (𝐱). The set of all locally

efficient points of  is denoted by LE.

In contrast to defining locally efficient points, the localness of an
efficient set additionally requires the notion of connectedness.

Definition 5 (Connectedness and Connected Component). The subset 𝐴 ⊆
 is called connected, if and only if there do not exist two open subsets
𝑈1 and 𝑈2 of  such that 𝐴 ⊆ (𝑈1 ∪𝑈2), (𝑈1 ∩𝐴) ≠ ∅, (𝑈2 ∩𝐴) ≠ ∅, and
(𝑈1 ∩ 𝑈2 ∩ 𝐴) = ∅; or equivalently, there do not exist two non-empty
subsets 𝐴1 and 𝐴2 of 𝐴 which are open in the relative topology of 𝐴
such that (𝐴1 ∪𝐴2) = 𝐴 and (𝐴1 ∩𝐴2) = ∅. Let 𝐵 be a non-empty subset
of  . A subset 𝐶 of 𝐵 is a connected component of 𝐵, if and only if 𝐶
is non-empty, connected, and there exists no strict superset of 𝐶 that is
connected.

Definition 6 (Locally Efficient set and Locally Efficient Front). A subset
𝐴 ⊆  is a locally efficient set of 𝐟 , if 𝐴 is a connected component of
LE. The image 𝑓 (𝐴) under 𝐟 is called a locally efficient front of 𝐟 .

Of course, solutions in locally efficient sets, which are not domi-
nated by any other solution are contained in the Pareto set. This implies
𝐸 ⊆ 𝐿𝐸 . Following our distinction of globally and locally efficient
points, we may also speak of a globally efficient set of solutions and a
globally efficient front of solutions instead of a Pareto set or a Pareto
front, respectively.

To further sharpen the notion of localness, we define the 𝜀-
neighborhood of a set in analogy to the 𝜀-ball, which surrounds a single
solution (see Definition 4).

Definition 7 (𝜀-neighborhood of a Set). Let 𝐴 ⊆  and 𝜀 > 0. The set
𝐴(𝜀) ∶= {𝑥 ∈  |∃𝑎 ∈ 𝐴 with ‖𝑥 − 𝑎‖ < 𝜀} is the 𝜀-neighborhood of 𝐴,
where ‖ ⋅ ‖ is the Euclidean norm.
4

b

Fig. 2. Illustration of some of the introduced concepts for decision space  = R2.

efinition 8 (Strict, Locally Efficient Set). Let 𝐶 ⊆ LE be a locally
fficient set. Then 𝐶 is a strict, locally efficient set, if and only if ∃𝜀 > 0
uch that 𝐶 ⪯ 𝐶 (𝜀).

Clearly, for a locally efficient set 𝐶 not to be strict, the following
must hold. For each 𝜀 > 0 there are some points in the 𝜀-neighborhood
of 𝐶 which are not dominated by 𝐶. That is, ∃𝑝 ∈ 𝐶 (𝜀) such that
𝑐 ∈ 𝐶 ∶ 𝑝 ≺ 𝑐 or 𝑝 ∥ 𝑐, where 𝑝 ∥ 𝑐 means that 𝑝 and 𝑐 are

incomparable. For instance, in case 𝐸 is connected, then 𝐸 is a strict
globally (and thus also locally) efficient set, in fact ∀𝜀 ∶ 𝐸 ⪯  (𝜀)

𝐸 . If
𝐶 is a connected component of 𝐿𝐸 , then both cases can occur: 𝐶 is
strict or 𝐶 is not strict; here a crucial role is played by incomparability.
For an illustration on how a locally efficient set can fail to be a strict
locally efficient set see Fig. 2 for decision space  = R2. Therein, the
set 𝐿𝐸 is the union of the connected components {𝑥}, 𝐿,1, 𝐿,2 and
𝐸 , where 𝐸 is the globally efficient set. We further assume that {𝑥}
and 𝐿,2 are strict, locally efficient sets, i.e., ∃𝜀3 > 0 ∶ {𝑥} ⪯ {𝑥}(𝜀3)

and ∃𝜀2 > 0 ∶ 𝐿,2 ⪯  (𝜀2)
𝐿,2 . The set 𝐿,1 is not strict for the following

reason: it is a half-open segment of a straight line, whose leftmost end
point is excluded (indicated by an open circle in the image). Moreover,
it is an accumulation point of  (𝜀0)

𝐸 , i.e., for a fixed 𝜀0 > 0 there exists
𝜀1 > 0 such that none of the points of  (𝜀0)

𝐸 ∩  (𝜀1)
𝐿,1 (the red intersecting

area in Fig. 2) is dominated by 𝐿,1. This gives an illustration of a
locally efficient set which is not strict.2 Note that there exist many other
reasons for a locally efficient set not to be strict. Also, if for a point
𝑝 ∈  it holds true that {𝑝} is a strict locally efficient set, then there
exists a neighborhood of 𝑝 which will not contain any points that are
incomparable to 𝑝.

Note that definitions for locally and strictly locally efficient sets
are also given, for example, in Liefooghe et al. (2018c) and Paquete
et al. (2004). However, these works are rooted in the combinatorial
domain and they therefore consider different search spaces and differ-
ent neighborhood relations. As a result, their understanding of (strictly)
locally efficient sets differs slightly from our perspective (as presented
in Definitions 6 and 8) and their definitions thus do not consider the
concept of locally efficient sets as defined in Definition 6 of our work.

A further difference is that we require locally efficient sets to be
connected. Furthermore, the Pareto front of 𝐟 is obtained by taking
the image under 𝐟 of the union of connected components of E. If E is
connected and 𝐟 is continuous on E, the Pareto front is also connected.

2 For a numerical example, we refer to Section 4, where a simple problem
denoted as Aspar’s problem) is visualized in Fig. 4. Therein, a non-strict
ocally efficient set is shown, which is open at one end. There, we find points
∈ 𝐶 (𝜀) such that ∀𝑐 ∈ 𝐶 ∶ 𝑝 ≺ 𝑐. In fact, these points are part of the ‘‘attraction
asin’’ of the globally efficient set.
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With a view towards algorithms, which compute approximations
to (locally) efficient sets and/or (locally) efficient fronts, one needs to
be able to identify whether a finite approximation set is a subset of a
locally efficient set. To cope with such finite sets, we need to adopt the
concept of 𝜀-connectedness.

Definition 9 (𝜀-connectedness). Let 𝜀 > 0. A subset 𝑆 ⊆  is 𝜀-connected
if for any two points 𝑠, 𝑠′ ∈ 𝑆 there exists a finite subset {𝑠1,… , 𝑠𝑘} ⊆ 𝑆
with 𝑠1 ∶= 𝑠 and 𝑠𝑘 ∶= 𝑠′ such that ‖𝑠𝑖−𝑠𝑖+1‖ ≤ 𝜀 for all 𝑖 = 1, 2,… , 𝑘−1.

Definition 10 (Finite 𝜀-locally Efficient Set). Let 𝜀 > 0 and let 𝑆 be a
finite subset of LE. Then 𝑆 is an 𝜀-locally efficient set, if 𝑆 ≠ ∅, and 𝑆
is 𝜀-connected.

Note that the points of an 𝜀-locally efficient set could in theory
belong to multiple locally efficient sets, if the magnitude of 𝜀 > 0 is
larger than the smallest distance between the points from two adjacent
locally efficient sets. Thus, a finite 𝜀-locally efficient set bridges the gap
between a MOP’s locally efficient sets and the approximation sets that
are usually generated by MOO algorithms. Practically, it still remains
to develop an algorithm to choose a proper value for 𝜀.

Considering the previous definitions and terminology, we finally
provide a definition for a multimodal MOP.

Definition 11 (Multimodal Multi-objective Optimization Problem, MM-
MOP). Let 𝑓 ∶  → R𝑚 be an MOP as defined in Definition 1 and
𝑔∶ 𝐿𝐸 → 𝑓 (𝐿𝐸 ), where 𝐿𝐸 is the set of locally efficient points of
𝑓 according to Definition 4. We denote 𝑓 multimodal, if at least one of
the following two conditions is satisfied:

1. 𝑔 is a surjection, but no injection (i.e., it is not bijective).
2. 𝐸 ⊂ 𝐿𝐸 .

Otherwise, i.e., if 𝑔 is a bijection and all efficient points in  are
globally efficient (𝐿𝐸 = 𝐸), the MOP 𝑓 is denoted unimodal.

This definition unifies the previously described different perspec-
tives on multimodality: multiglobality and the wider perspective in-
cluding locally efficient sets. To improve comprehensibility, we depict
the conditions of Definition 11 in a matrix view (see Fig. 3). It is clear
that merely MOPs, for which 𝑔 is bijective and which comprise a Pareto
set, but no other local efficient set are considered to be unimodal. All
other problems are multimodal and either comprise multiple global
efficient points in 𝐸 that map to the same image in objective space
(multiglobal), comprise additional locally efficient sets (multilocal), or
both.

Fig. 3. Schematic depiction of the definition and ‘‘types’’ of uni- and multimodal MOPs.
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4. Visualization of multi-objective landscapes

In order to complement the theoretical definitions and terminology
of the previous section, we next provide a brief discussion of current
visualization techniques and available recent means to show the afore-
mentioned properties of MOPs in landscape depictions, which resemble
the intuition known from SO.

Considering that one can depict at most three dimensions, illustrat-
ing multiple decision variables and objectives simultaneously is nearly
impossible. In consequence, most publications in the MO community
only display the problems’ Pareto fronts (or approximation sets thereof)
in two- or three-dimensional scatter plots. That is, the entire structure
of a MOP is ignored and instead, the problem is reduced to its Pareto
front or set. Similarly, the quality of a MO optimizer is defined
solely based on its Pareto front approximation. The SO analog to this
perspective would be reducing the whole landscape of the SO problem
to its global optimal point(s) in decision or objective space — and
assessing algorithmic search behavior solely based on its distance to
the respective globally optimal point(s). This neglects many structures
algorithm developers are interested in. One of the most interesting (and
also most intuitive) properties of each point is its corresponding basin
of attraction. An attraction basin is defined as the set of points from
which a gradient descent leads to the same locally efficient solution
(the attractor). Specifically, in a multimodal problem, multiple of these
basins exist and for deterministic gradient descent (and many other
local optimizers that follow an approximated gradient path) these
basins may resemble local traps. But also other structural properties
like discontinuities along with the imposed challenges well-known
for SO optimization algorithms (Schwefel, 1993), would be (visually)
neglected.

This very limited – though far too often used – representation of
MOPs is particularly surprising, since some suitable approaches have
been developed over the years, which reveal at least some characteris-
tics of a problem landscape’s structure. For instance, the cost landscapes
proposed in Fonseca’s PhD thesis (Fonseca, 1995) constitute one of the
first approaches, which are capable of illustrating structural relation-
ships in a MOP’s decision space. The height of a point in such a cost
landscape is defined by its (normalized) Pareto rank, i.e., the number of
solutions, which dominate the respective point. In consequence, this ap-
proach not only depicts globally optimal regions in the decision space,
but also reveals related characteristics such as symmetry w.r.t. global
optima — due to the ranking of the points. The only potential drawback
of this approach is its focus on the Pareto rank and thereby on the global
optimality of the problem. Therefore, as illustrated in the first row of
Fig. 4, this method is incapable of illustrating local optima and/or the
corresponding basins of attraction (as multi-objective equivalents to
the SO case). However, both are important aspects for investigations
of multimodal landscapes.

Nonetheless, depicting MOPs using Fonseca’s visualization approach
is much more informative than a pure reduction to the Pareto front,
and already reveals interactions among the objectives. In consequence,
it has been used for the depiction of various MOPs – including the
benchmark suite of CEC 2019 (Yue et al., 2019) – despite its multiglobal
emphasis.

The up-to-now most comprehensive overview of visualization ap-
proaches for MO landscapes can be found in the PhD thesis of Tušar
(2014). Alternatively, one can study the succeeding publication by
Tušar and Filipič (2015), which constitutes a compact version of the
aforementioned thesis. Within both works, a variety of visualization
methods – ranging from scatter plot matrices and parallel coordinate
plots, via sammon mapping and principal components, to hyper-space
diagonal counting and hyper-radial visualization – are reviewed. How-
ever, as discussed in more detail in both works, all of the considered
approaches have certain limitations. Therefore, the authors proposed
an alternative visualization technique named prosection (Tušar, 2014;
Tušar and Filipič, 2015). This approach allows to depict a user-specified
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Fig. 4. Comparison of the three most sophisticated techniques for visualizing MOPs in decision (odd columns) and objective space (even columns), respectively. Shown images are
based on two exemplarily MOPs: left two columns correspond to the bi-objective polynomial 𝑓 (𝑥1 , 𝑥2) = (𝑥41 − 2 ⋅ 𝑥21 + 𝑥22 + 1, (𝑥1 + 0.5)2 + (𝑥2 − 2)2), which we denote Aspar Function,
whereas the six images on the right are based on an instance (FID: 10, IID: 7) from the bi-objective BBOB test suite (Tušar et al., 2016). The three visualization methods are
distinguished by row (top to bottom): the Pareto ranking based on the cost landscape method of Fonseca (1995), the cumulated gradient field heatmaps (Kerschke and Grimme,
2017), PLOT technique (Schäpermeier et al., 2020). All ‘heights’ (i.e., colors) are shown on a logarithmic scale to put more emphasis on the (locally) optimal solutions in decision
and objective space, respectively.
section of a higher-dimensional space in a lower-dimensional scatter
plot via projections of points. More precisely, points that are located in
a certain section of the considered high-dimensional space (i.e., in the
proximity of a user-specified hyperplane) are (orthogonally) projected
onto the associated hyperplane. Unfortunately, from a practical point of
view, this method is not very feasible for illustrating MO landscapes as
each projection comes with a strong loss of information — all points
that are not in the ‘‘close proximity’’ of the cutting hyperplane will
be discarded. In consequence, this method is at most beneficial for
the very special case of 𝑚 = 4 objectives; for 𝑚 ≤ 3 one can depict
all objectives without any projections and for 𝑚 > 4, one would
need to perform multiple projections (and thereby sequentially reduce
the dimensionality by one) until one reduced the original data to a
three-dimensional space. Moreover, all discussed methods have been
investigated w.r.t. their ability of displaying points based on their
representation in objective space, i.e., independent of the correspond-
ing decision space. For multimodal investigations, this is again not
beneficial. Yet, neglecting the high loss of information, these methods
could nonetheless provide useful insights as one could simply apply
them to the combination of search and objective space.

For the continuous domain, the first method that combines all of
the aforementioned desired properties – i.e., simultaneous visualization
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of decision and objective space, as well as depiction of local optima
– has been proposed by Kerschke and Grimme (2017). It depicts the
interaction effects (of the different optima) of the problem’s objectives
in the decision space using the notion of a gradient descent direc-
tion (Cauchy, 1847). Based on a grid of points that is spanned across the
whole decision space, the bi-objective gradient is computed per point.
This MO gradient is defined as the sum of normalized gradients of both
individual objectives. Each of the combined gradients – one gradient
per point of the grid – is directed towards the largest simultaneous
improvement w.r.t. both objectives. The length of such a MO gradient
– i.e., a value between zero and two – indicates the steepness of the
gradient landscape in that particular point. By ‘‘following’’ the path
of gradients downhill towards a point whose gradient is zero (i.e., a
locally efficient point, see Definition 4) one reaches (a part of) a MO
local optimum (i.e., a locally efficient set, see Definition 6). Note
that analogous to SO optimization, points whose gradients lead to the
same (set of) locally efficient point(s) form the corresponding basin of
attraction. Noticeably, the proposed approach not only allows to depict
locally optimal sets, as well as their basins of attraction in the search
space, but can also be used to depict the corresponding images in the
objective space (Kerschke et al., 2019b) (see images in the second row
of Fig. 4). And although this method has originally been introduced
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Fig. 5. An exemplary MOP from bi-objective BBOB (Tušar et al., 2016) (FID: 10, IID: 7), shown in its 3D search (left) and 2D objective space (right) using the interactive moPLOT
dashboard (Schäpermeier et al., 2021). The colored points indicate the location and dominance relationship of the MOP’s efficient sets and their corresponding fronts. Further, the
MRI scan method used herein illustrates slices of the search space and their corresponding objective values by means of gray shaded points.
for MOPs with two-dimensional search and objective spaces, it can
actually be used to visualize any MOP, as long as either the search or
the objective space is two-dimensional.

Noticeably, the heatmap’s strong emphasis on localness is not purely
beneficial. Of course, it is advantageous to easily identify local optima
and their surrounding attraction basins. However, only looking at the
locally efficient sets in decision space does not help in identifying
a quality ranking of the different sets in the decision space. This
approach is lacking a global perspective.

The recently proposed Plot of Landscapes with Optimal Trade-offs
(PLOT) (Schäpermeier et al., 2020) combines the advantages of both
aforementioned methods — the global perspective of cost landscapes
(based on Pareto ranking) and the local view of the gradient-based
heatmaps. As shown in the bottom row of Fig. 4, PLOT displays the
same attraction basins as the aforementioned heatmap approach — but
uses a less flamboyant (gray) color scheme. Here, darker values indicate
points that are closer to their respective local optimum. On top of
those gray-colored attraction basins, PLOT displays the corresponding
local optima. But in contrast to the heatmap approach, the sets of
local optima are colored according to their dominance relationship:
dark blue segments correspond to global optima, whereas red segments
correspond to inferior local optima. As visually confirmed in the bottom
row of Fig. 4, PLOT is even capable of revealing the global structure of
highly multimodal MOPs, such as the bi-objective BBOB problem (see
right half of Fig. 4).

In addition, the visualization methods based on MO gradients are
capable of depicting locally efficient sets as defined in Section 3 (and
shown schematically in Fig. 2). As exemplified in Fig. 4, the landscapes
consist not only of color (or gray) shaded basins of attractions sur-
rounding the locally or globally efficient sets. The images also show
locally efficient sets that are either completely surrounded by a basin of
attraction or intersected by a basin with dominating solutions resulting
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in a ridge-like structure in decision space. This fits exactly with what
was shown in Fig. 2: a globally (and also strictly locally) efficient
set dominates and overlaps another locally efficient set and its basin
of attraction. Later, we will return to precisely this problem to get a
first idea of how to exploit these structures for algorithm design (see
Section 5.3).

In an attempt to consolidate recent developments in MOP visualiza-
tion and to facilitate the use of the underlying techniques, Schäpermeier
et al. (2021) recently published a user-friendly dashboard that enables
interactive and platform-independent exploration of MOP landscapes.3
The dashboard also provides two methods for interactively exploring
three-dimensional search spaces of MOPs: one based on the idea of MRI
scans (see Fig. 5 for an exemplary visualization of a bi-objective BBOB
problem) – primarily known from the medical field – and one based on
a layered visualization of so-called isosurfaces (i.e., 3D level sets).

Building on our understanding of multimodality in continuous MOO
(Section 3), we will use the visualization methods presented in this sec-
tion to examine the structures of various widely used MOPs (especially
in terms of their multimodality) in Section 5.1. Subsequently, we will
discuss the resulting implications for characterizing these problems,
as well as for algorithmic search behavior in Sections 5.2 and 5.3,
respectively.

5. Implications for multi-objective optimization

With the previously consolidated terminology of localness in MOO
(Section 3) and the visual insights into MOP landscapes (Section 4),
we examine the potentials of considering multimodality in EMO more

3 The dashboard is, e.g., available at https://schaepermeier.shinyapps.io/
moPLOT.

https://schaepermeier.shinyapps.io/moPLOT
https://schaepermeier.shinyapps.io/moPLOT
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strongly. In particular, we focus on benchmarking, automated char-
acterization of (multimodal) MOP landscapes, the related impact on
algorithm development (even in SO optimization), and the associated
challenges in performance assessment.

5.1. Benchmarks

When dealing with MO benchmark problems, a rather poor under-
standing of the landscapes’ structural properties and their associated
impact on an algorithm’s search behavior is observable. In fact, various
MOPs have been created based on principles that were initially de-
signed for single-objective test problems (Whitley et al., 1995; Bäck et al.,
1997) – without ever questioning their applicability in the context of
MOO.

Deb (1999) discussed the difficulties that a MO genetic algorithm
(GA) might face when solving a MOP and explicitly listed multimodal-
ity as one of those challenges, because it could hinder the GA’s conver-
gence to the Pareto front. Unfortunately, this statement has oftentimes
been quoted outside of its original context and thereby developed into a
general claim about potential obstacles a MO search algorithm is facing.
In combination with the design principles mentioned above, this led
to the common – yet false – belief that multimodality is a challenging
structural property in general.

Within the following two subsubsections, we give an overview of
various benchmark suites that are frequently used for the comparison
of MO optimizers, and address their relationship to multimodality (ac-
cording to our understanding). While Section 5.1.1 lists test suites that
are used for general benchmark comparisons, Section 5.1.2 focuses on
benchmark suites that have explicitly been designed from a multimodal
perspective.

5.1.1. General MO benchmarks
Kursawe (1990) and Viennet et al. (1996) were among the first

who proposed MO test functions. Although multimodality was not of
particular interest back then – instead one was mainly looking for
MOPs in general – their test functions already contained a variety of
local optima as shown in their colorful PLOTs in Fig. 6. The actual
awareness for multimodality has increased around the millennium,
when the nowadays well-known MO benchmark suites MOP (van Veld-
huizen, 1999) and ZDT (Zitzler et al., 2000) were proposed. Within the
corresponding works, the respective authors stated that multimodality
poses a challenge in SO optimization and stochastic algorithms usually
perform better on such problems. They thus concluded that their MO
test suites should also contain multimodal MOPs. In line with the
previous argumentation, the DTLZ test problems (Deb et al., 2005)
were constructed such that they ensure ‘‘controllable hindrance to
converge to the true Pareto front’’ (for EMOAs). Emmerich and Deutz
(2007), who introduced a set of MOPs based on Lamé superspheres, also
approached MO multimodality via local convergence of an algorithm;
yet, at the same time, they also emphasized the ‘‘vital importance’’ of
this property for the assessment and comparison of MO algorithms.

More than a decade ago, Huband et al. (2006) comprehensively
reviewed various MO test suites and identified a lack of multimodal
problems. Noticeably, within their work they reduced MO multimodal-
ity to the SO case by arguing that MOPs are a superset of SO problems,
and therefore design principles of MO test suites should be a superset of
guidelines from the SO domain. According to their definition, the MOPs
in their proposed WFG test suite (Huband et al., 2006) are multimodal,
if one of its underlying objectives is a multimodal function.

The ten (unconstrained) test functions UF1 to UF10, which Zhang
et al. (2008) proposed for CEC 2009, were the first MOPs designed
for and used within a conference’s competition. However, they did not
explicitly address the aspect of multimodality; instead, their main mo-
tivation apparently was providing additional MOPs for benchmarking
purposes in the community.
8

In 2016, Tušar et al. proposed the bi-objective BBOB test suite
(Tušar et al., 2016), which essentially is a collection of 55 bi-objective
problems resulting from an exhaustive, pairwise concatenation of a
subset of ten SO functions from BBOB (Hansen et al., 2009) – which
is the gold standard in SO optimization. Although the authors did not
explicitly discuss the issue of MO multimodality, they support the con-
cept of knowledge transfer from the SO to the MO domain by claiming
that MOPs inherit the properties of their SO components. According to
our visualizations many of the bi-objective BBOB problems look indeed
highly multimodal as exemplarily depicted (for its 52nd problem) in
Fig. 6.

In addition to the aforementioned test suites, a variety of (spe-
cialized) MOPs have been proposed over the last decade. Noticeably,
for none of them multimodality is the primary focus. For instance,
the main objective of the difficult-to-approximate (DtA) test prob-
lem generator (Wang et al., 2018) was the generation of MOPs for
which the extreme solutions of the respective Pareto fronts (i.e., the
global optima of the underlying objectives) are difficult to approx-
imate. However, the authors were at least aware of multimodality
as they explicitly stated their generator’s capability to create multi-
modal MOPs. The framework proposed by Saxena et al. (2011) also
enables users to generate MOPs with many and/or complex Pareto
sets. Yet, the primary focus of the Saxena–Zhang–Duro–Tieari (SZDT)
problems are many-objective problems. Complementing the aforemen-
tioned SZDT problems, which aimed at a high-dimensional objective
space, the large-scale multi-objective problems (LSMOPs) proposed
by Cheng et al. (2016) emphasize high-dimensional decision spaces.
According to the review of scalable MOPs by Zapotecas-Martínez et al.
(2018), seven out of the nine LSMOPs are multimodal. Probably the
most recent collection of (multimodal) MOPs are the distance-based
multi/many-objective point problems (DBMOPP) proposed by Field-
send et al. (2019). Although the authors specifically advertise attributes
such as the generation of MOPs with disjoint Pareto sets or varying
objective scales as strengths of their framework, their generated MOPs
also revealed multimodal structures.

Further, Cheng et al. (2017) developed MaF as suite of many-
objective test functions, Glasmachers (2019) analyzed the challenges of
convex quadratic bi-objective problems, and the games-related bench-
mark GBEA (Volz et al., 2019) by Volz et al. aims at making the inter-
esting properties of games-related problems available to the EC commu-
nity. All three works strongly focus on the emphasized characteristics
(i.e., many-objective, convex quadratic bi-objective, and relation to
games), but do not explicitly address multimodality.

5.1.2. Focus on multimodal landscapes
Despite the plethora of MO benchmarks – and the multimodal

problems occasionally found therein – the set of MOPs considered
in Kerschke et al. (2016, 2019b) potentially is the first MO test suite
with a particular focus on multimodality. Similar to bi-objective BBOB,
the problems contained therein are concatenations of several multi-
modal SO problems — and each of them results from superpositioning
multiple unimodal functions. The respective problem instances can
be easily created using the scalable multiple peaks model 2 (MPM2)
generator by Wessing (2015a,b), which is an enhanced version of the
MPM generator utilized in Preuss (2015). Implementations of MPM2
are, e.g., available for python (optproblems, Wessing, 2016) and R
(smoof, Bossek, 2017). As demonstrated in Fig. 6, these MOPs can be
kept simple (e.g., only few basins and a mostly smooth landscape) to
facilitate the understanding of interactions among the objectives, but on
the other hand can easily be extended to highly multimodal problems.

One of the currently most prominent test suites for multimodal MOO
is the collection of Yue et al. (2019). It comprises a diverse set of
scalable test problems (see, e.g., the third and sixth row of Fig. 6)
and provided the basis for the multimodal MOO competition4 at CEC

4 http://www5.zzu.edu.cn/ecilab/info/1036/1171.htm.

http://www5.zzu.edu.cn/ecilab/info/1036/1171.htm
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Fig. 6. Exemplary, yet representative MOPs depicted in decision (top three rows) and objective space (bottom three rows), respectively, using PLOTs. While some problems
(e.g., DTLZ2, ZDT2 and MMF7) possess only a single set of locally (and thus globally) efficient points, other MOPs like the depicted bi-objective BBOB problem are highly
multimodal.
2019 (Liang et al., 2019). Although the posed problems indeed possess
challenging (and for gradient-based approaches even deceptive) traits,
it should be noted that the vast majority of them is either unimodal
or multiglobal – but not multilocal (see Definition 11). That is, many of
these MOPs contain multiple efficient sets, however, they usually all
map to the (same part of the) Pareto front. Therefore, this test suite
addresses only a specific type of multimodality.

The most recent collection of multimodal MOPs are so-called multi-
polygon test problems (Ishibuchi et al., 2019; Peng et al., 2019), whose
objectives are the minimal distances to different polygons. However,
they defined the localness of Pareto sets in terms of set dominance in
the objective space, which is different from the perspective that we
propose here.
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5.1.3. Perspectives for benchmarks with multimodal MO test problems
Despite the plethora of MO test suites, we are still lacking a truly

multimodal benchmark suite. The collection by Yue et al. (2019) –
which in addition to their proposed MMF problems also contains mul-
timodal MOPs from other works, e.g., SYMPART Rotated (Rudolph
et al., 2007) – already points in the right direction. However, their
understanding of multimodality is rather related to the diversity in
decision space (and similar quality in objective space) than to the
challenges resulting from efficient sets whose associated fronts are
of different quality. According to their function definitions, and as
confirmed by Fig. 6, the majority of their MOPs possess only very few
(and occasionally disconnected) local fronts.

Another perspective for future work in this research area is a
systematic (and visually supported) assessment of the aforementioned
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test suites — with an emphasis on their structural properties like
multimodality. Compared to the comprehensive overview by Huband
et al. (2006), this overview could (a) make use of the new visualization
methods, (b) consider the refined terminologies (e.g., multimodality, lo-
calness), (c) integrate benchmarks from the last one-and-a-half decades
(Huband et al., 2006 has been published in 2006), and thereby (d)
reveal properties that are, if at all, only poorly captured by the current
MO test suites.

5.2. Features for characterizing MOPs

When confronted with the task of optimizing a continuous problem,
having at least a vague idea of the landscape’s structure is usually
highly beneficial. Already a slightly better understanding of the land-
scape, including the associated structural challenges for algorithms
acting on it, facilitates the selection and/or configuration of a suitable,
powerful optimization algorithm (Kerschke et al., 2019a; Kerschke and
Trautmann, 2019a; Eggensperger et al., 2019). However, the char-
acterization of problem landscapes – a research area that is usually
termed Exploratory Landscape Analysis (ELA) or sometimes also Fitness
Landscape Analysis (FLA) – already poses various challenges in case of
SO optimization as elaborated in detail in the corresponding surveys of
Malan and Engelbrecht (2013), Muñoz Acosta et al. (2015), or Kerschke
and Trautmann (2019b).

However, all of these features have explicitly been designed for the
characterization of SO landscapes and thus are incapable of captur-
ing effects caused by the interaction of the different objectives. For
instance, in Kerschke and Trautmann (2016) the authors tested the suit-
ability of some of the aforementioned ELA features for characterizing
bi-objective instances of the well-known benchmark suites DTLZ (Deb
et al., 2005) and ZDT (Zitzler et al., 2000). Within their study, they
first computed the features per pair of problem and objective, and then
computed a feature vector for the bi-objective problems by taking the
ratio of the two feature vectors of the SO components. The associated
correlation matrix has then been investigated w.r.t. relations and/or
differences among the problems. Surprisingly, some (dis-)similarities
could be observed, yet, in the end, the proposed method is insufficient
of characterizing MO problems, as interactions between the objectives
were only weakly respected (via the ratio of the SO features).

Another step towards measuring features of MO landscapes has been
made in a previous work (Kerschke et al., 2019b) of this manuscript’s
authors. Therein, we followed a white-box approach – i.e., we assumed
full knowledge of the MOP’s function – and designed a first set of
characteristics that quantify information that is contained within the
problems’ landscapes. This set of pseudo-features contains measures
such as the number of locally efficient sets, the relative length of the
Pareto front (w.r.t. the cumulated length of all local fronts) or the
number of local fronts that are connected to (parts of) the Pareto front.
Although these features definitely are capable of respecting interac-
tions among the (local) optima of the different objectives, we want to
emphasize that they are mainly of exploratory character (due to their
white-box approach).

Moreover, recent works on the visualization of MOPs (Grimme
et al., 2019a,b) revealed very strong patterns among common MO
benchmark suites. While problems of historic and long-established
benchmarks such as DTLZ (Deb et al., 2005) and ZDT (Zitzler et al.,
2000) possess a rather smooth structure, landscapes of concatenated
(multimodal) SO problems, e.g., the ones from bi-objective BBOB
(Tušar et al., 2016), have a highly scattered appearance. Similar find-
ings can be made for the other MO benchmarks. Thus, from a structural
point of view, MOPs appear to be rather homogeneous within a
benchmark suite, but heterogeneous between them. Therefore, features
that actually quantify (size and number of) the basins of attraction, or
measure the landscape’s smoothness or ruggedness, could potentially be
very useful for feature-based approaches such as automated algorithm
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configuration and/or selection. For instance, one could adapt features
that extract the corresponding information in the SO domain (Lunacek
and Whitley, 2006; Malan and Engelbrecht, 2009; Mersmann et al.,
2011; Kerschke et al., 2014).

There are some features and visualization techniques used in multi-
modal SO optimization that cannot be easily generalized to multimodal
MO optimization. Obviously, the number of local optima cannot be
generalized. For discrete landscapes, however, we may well utilize
this feature. More advanced features in landscape analysis are derived
from tree- and network-based descriptions of multimodal landscapes,
such as barrier trees (Stadler and Flamm, 2003) and local optima
networks (Fieldsend and Alyahya, 2019). In both cases, it is possible
to generalize them to the discrete MO case, but in the continuous case
there would be infinitely many nodes in such trees or networks.

In addition to the development of features that capture the infor-
mation of the basins of attraction – and thereby measure the problem’s
degree of multimodality – there is a great need for research on how the
interaction of a problem’s objectives can be measured. For instance, one
could consider techniques that have initially been designed for measur-
ing the interaction among variables in general (Reshef et al., 2011; Sun
et al., 2017) – i.e., independent of the space (search, objective, etc.)
they belong to – and adapt them to capture the respective information
among the objectives.

In the end, multimodality not only affects the automated feature-
based characterization of the MOPs’ landscapes, but also the behavior
of search algorithms operating on them. Therefore, we will in the
following investigate how algorithm engineers utilized this additional
information.

5.3. Algorithmic ideas

In our opinion, the potential of investigating localness for MOPs can
build on the previous aspects of visualization, benchmarking, as well
as feature identification. It offers a good opportunity to push research
even beyond current endeavors in what is called multimodal MOO. In
the following, we will discuss this corpus of literature and then propose
possible and promising directions of research that may advance EMO
and broaden development, application and transfer of new insights.

Today, the algorithmic consideration of multimodality in (contin-
uous) MOO is mainly focusing on what we considered being a subset
of our multimodal perspective, denoted as multiglobal optimization (see
Definition 11). In most cases, this refers solely to what was shown in
Fig. 2 (left) in Section 1: the challenge to find all parts of the globally
efficient set — even if those solutions map to the same representation
in objective space.

In fact, finding multiple realizations (in decision space) with equiv-
alent quality (in objective space) is of major practical importance.
In case a found globally efficient solution is not realizable (e.g., in
production processes, where only a certain precision can be achieved,
or when secondary restrictions hinder the production in principle),
the availability of another (and sometimes very different) solution of
equivalent quality is very welcome.

The main goal of all approaches in that stream of finding all parts
of the globally optimal set is to preserve solution diversity not only
on the Pareto front, but also on the Pareto set. As different (and
potentially very diverse) globally efficient solutions in the Pareto set
may map to the same image in objective space (see, e.g., SYMPART
Rotated (Rudolph et al., 2007; Yue et al., 2019) in the bottom right
of Fig. 6), standard EMO approaches (like NSGA-II Deb et al., 2002
or SMS-EMOA Beume et al., 2007 to name only two of the most
famous ones) tend to lose diversity in decision space due to diversity

preservation mechanisms that solely operate in the objective space.
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5.3.1. A summary of current multimodal MO optimization algorithms
From a pure algorithmic point of view, approximating as many

as possible globally optimal solutions demands (a) preservation of
(near) efficient solutions during (b) an optimization process that
covers the whole decision space as good as possible. Therefore, various
approaches have been proposed: One of the earliest approaches is the
inclusion of an additional archive to preserve decision space diversity.
SPEA2+ (Kim et al., 2004; Hiroyasu et al., 2005) extends the original
SPEA2 (Zitzler et al., 2001) approach by considering two archive sets
for objective and solution space, respectively. Also by archiving, 4D-
Miner (Sebag et al., 2005; Krmicek and Sebag, 2006) keeps diverse
global (and good local) solutions. A related approach based on multiple
populations has been proposed by Ulrich et al. (2010). The authors
design the Diversity Integrating Optimizer (DIOP), which incorporates
an archive population 𝐴 for diversity preservation and a target popula-
ion 𝑇 for convergence. The offsprings are then generated out of their
nion 𝐴∪𝑇 . The P𝑄,𝜀-MOEA by Schütze et al. (2011b) is a steady-state
rchive-based MOEA, which differs from the 𝜀-MOEA (Deb et al., 2003)

in two ways: the archiver now focuses on decision space diversity, and
the implementation omits the population in favor of the archive.

Another idea is to integrate existing diversity preservation mecha-
nisms into existing algorithms. Deb and Tiwari (2005, 2008) set the
stage for this by extending NSGA-II and considering decision space
diversity in the original crowding distance measure. In addition, they
use 𝜀-dominance as ranking mechanism to preserve diverse solutions.
They find that this approach can also ‘degenerate’ to a competitive
SO optimizer and hence call it Omni Optimizer. Other authors adapt
this approach with slight modifications or extend some internal mech-
anisms. They apply them in the context of artificial immune sys-
tems (Coelho and Von Zuben, 2006), as well as in particle swarm-based
approaches (Yue et al., 2018).

Strongly related to these diversity measures, niching methods from
the SO domain are transferred and adapted to MOO. Shir et al. (2009)
adapt an existing CMA-ES niching framework and apply it to the MO
domain for boosting decision space diversity. The underlying idea is to
aggregate diversity in decision and objective space in a rather naïve
way — which works surprisingly well.

Zechman et al. (2013) designed the MO Niching Co-evolutionary
Algorithm (MNCA), which identifies ‘‘distinct sets of non-dominated so-
lutions which are maximally different in their decision vectors and are
located in the same non-inferior regions of a Pareto front’’. Liang et al.
(2016) deal with the problem of finding all globally optimal sets and
define a so-called decision space based niching MOEA (DN-NSGAII).
NIMMO (Tanabe and Ishibuchi, 2019) is a niching indicator-based
multimodal multi- and many-objective optimization algorithm that has
some commonalities with MOEA/D-AD (Tanabe and Ishibuchi, 2018)
and TriMOEA-TA&R (Liu et al., 2018b). It uses a niching method, which
is similar to the deterministic crowding method, but the environmental
selection in NIMMO is based on the indicator values of the child and
closest individuals. Liu et al. (2018a) introduce the Double-Niched EA
(DNEA), which adopts a niche sharing method in objective and decision
space.

Two very recent studies also focus on restricting diversity estimators
to niches in decision space. Peng and Ishibuchi (2021) define a niche by
the 𝑘 closest solutions of a point in decision space, and it is shown based
on incorporation into NSGA-II and SPEA2 that the loss of equivalent
Pareto optimal solutions can be extremely diminished. NxEMMO by
Javadi and Mostaghim (2021) builds on the same underlying idea.
Essentially, it is a modified version of NSGA-II using a new environment
selection method based on density-based indicators. Specifically, a pro-
cedure denoted as truncation incorporates either the nearest neighbor
distances or the harmonic average distance (HAD) which is applied to
the 𝑘 nearest neighbors of each solution. This is shown to have potential
to significantly increase decision space diversity.

Further niching-related approaches are pursued by Kramer and
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Danielsiek (2010) and Maree et al. (2019). Both propose the application
of clustering approaches for diversity preservation. While the former
apply DBSCAN as density-based method, the latter transfer the idea
of hill-valley clustering from the SO domain. Their clusters cover
roughly similar areas in decision space, which then were claimed to
relate to globally and locally efficient sets. However, other visualization
techniques (see Section 4) do not confirm the localness findings.

With two different and opposing perspectives, other authors address
the challenge of diverse solution preservation or production: Ishibuchi
et al. (2012) create a bi-objective solution set optimization problem by
maximizing the decision space diversity and the objective space hyper-
volume. In solving this problem, they find multiple non-dominated sets
in the sense of multiglobality. From another decomposition-related per-
spective, Rudolph et al. (2007), Rudolph and Preuss (2009) search for
multiple globally efficient solution sets by using a multi-start approach
that first clusters test solutions to gain adequate starting solutions for
a SO optimizer that aims for one specific subset.

Tanabe and Ishibuchi (2018) propose a decomposition-based EA for
multimodal MOO extending MOEA/D (Zhang and Li, 2007), named
MOEA/D-AD, by allowing multiple similar solutions per sub-problem,
if they are diverse in decision space. As a consequence (in order to
consider archived individuals) the authors allow dynamic adaptation of
the population size 𝜇. This approach is related to an approach by Hu
and Ishibuchi (2018) which identifies the same problems for MOEA/D
but proposes to integrate decision space distance and neighborhood
distances into selection. It should be noted that this also works the other
way around, namely by multiobjectivization in order to detect very hard
to find optima in the SO domain, e.g., by means of MOAMO (Preuss
et al., 2015).

Finally, we should mention some special mechanisms for diversity
preservation that stem from natural or self-organizational paradigms:
Coelho and Von Zuben (2011) apply concentration-based immune net-
works for (multimodal) MOO inspired by an extension of a previous SO
approach, whereas Liang et al. propose SMPSO_MM (Liang et al., 2018),
a particle swarm approach that integrates a self-organized network to
build a neighborhood relationship in decision space.

The extensive discussion of the literature on what we call ‘‘multi-
global optimization’’ shows, that localness is usually not playing a
central role in this area. As in original methods that aim at finding
‘‘some’’ part of the Pareto front, the perspective of localness is ne-
glected. Recent work in this area, however, discovered localness as
additional important aspect: The DNEA-L approach (Liu et al., 2019)
integrates an additional archive to also store good locally efficient
sets, which may contain interesting solutions for practical realization.
This is in line with the classical argument in SO optimization to also
keep near optimal local solutions (Preuss, 2015). Although localness is
addressed here explicitly, there is no deeper analysis of local structures
in decision space. The mechanisms of ‘‘multi-global optimization’’ are
slightly extended to preserving good local solutions.

5.3.2. New perspectives on multimodality by exploiting localness
Instead of actively maintaining the population diversity in both

decision and objective space, some recent algorithms approach the
problem of multimodality and localness from a different perspective.
This research direction is inspired by works that, in case of a continuous
decision space, extend gradient-based SO optimization methods to the
MO scenario (Fliege and Svaiter, 2000; Schütze et al., 2011a). Although
these methods are (in analogy to the SO case) considered as local
search methods, their application inside EMOAs, and also as stand-
alone approaches, suggest that they can contribute to good solution
approximations (Schütze et al., 2008). Consequently, a more detailed
investigation of gradient-based local search in the context of MOO
is promising. In contrast to the previous discussion of algorithmic
approaches, here, the main challenge is to understand and exploit local
search mechanisms in the context of multimodal and MO landscapes in-
stead of discovering all optimal solution sets. This approach focuses on

investigating, whether local efficient sets and their basins of attraction
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in MOO should be considered as ‘traps’ as in the SO case, or whether
local search can possibly benefit from local structures and properties
that are special to MOO.

In Emmerich and Deutz (2012), a set of non-dominated points has
been found by using the gradient of its hypervolume indicator. In
tradition of the SO understanding, it has been assumed that a naïvely
implemented gradient ascending method can only act as local search
algorithm and will possibly get stuck in locally efficient sets. Hence,
Wang et al. (2017b) proposed an improved gradient-based algorithm,
called Hypervolume Indicator Gradient Ascent MOO (HIGA-MO), to
search for global and local optima of the hypervolume indicator si-
multaneously, thereby approximating the globally and locally efficient
sets (in the sense of 𝜀-connectedness; see Section 3) due to Pareto
compliance property of the hypervolume indicator. HIGA-MO explicitly
addresses the multimodality perspective by partitioning its search pop-
ulation into layers of locally non-dominated points (via non-dominated
sorting (Srinivas and Deb, 1994)) and refining (pre-images of) each
layer using the hypervolume indicator gradient, which is defined solely
on this layer. Aiming to find as many locally efficient set as possible,
HIGA-MO also tries to avoid wasting budget by restarting runs where it
stagnates (in locally efficient sets). Already found locally efficient sets
are archived.

A very recent algorithmic idea (Grimme et al., 2019b,a) is based
on insights from the visualization of globally and locally efficient sets
(as described in Section 4) across a variety of MOPs (see Fig. 6). A
noticeable observation in the visualization of MOPs and a general char-
acteristic of them is that the problem’s basins of attraction superpose
each other. That is, basins of dominating locally efficient sets superpose
basins of dominated locally efficient sets, leading to so-called ‘ridges’.
These ridges are observed in decision space and indicate the boundary
between basins of attraction for the MO gradient. Moving from a
dominated basin across such a ridge and following the MO gradient
leads into the superposing basin and from there towards the dominating
efficient set. It is worthwhile to point out that moving from a dominated
basin across the ridge is feasible because the locally efficient set in one
basin is ‘touching’ a superior basin of attraction through the ridge. As
illustrated in Fig. 2, a locally efficient set that touches its dominating
basin of attraction is not strict according to Definition 8.

The Multi-Objective Gradient Sliding Algorithm (MOGSA) (Grimme
et al., 2019b,a) utilizes and exploits these findings. From an initial point
in decision space it follows the direction of the MO gradient towards the
attracting locally efficient set. The local search phase terminates, when
the (normalized) gradients of the considered objectives cancel each
other out (see Fritz John condition in Section 3). Then, MOGSA moves
along the efficient set in order to detect a ridge towards a superposing
basin of attraction. When such a ridge is passed, MOGSA switches
back to local search and descents to the next locally efficient set. Once
MOGSA detects an efficient set without a cutting ridge, it has reached a
strict locally efficient set (see Definition 8). Empirically in many cases,
strict locally efficient sets are also globally efficient — at least for
commonly used benchmarks. Note that MOGSA is technically a deter-
ministic local search mechanism. Interestingly, first experiments of the
authors show that this algorithm can be competitive or even superior
to MOEAs on current multimodal MOPs (Grimme et al., 2019b).

To go beyond current research, we are convinced that the insights
gained from visualization of multimodal MO landscapes can contribute
to many innovations in algorithms for solving MOPs more efficiently.
Like in the MOGSA approach, knowledge of the landscape may facili-
tate simple mechanisms to direct search for a certain (and better) region
in decision space. Features of landscapes (as discussed in Section 5.2)
may even contribute to an automatic detection of structural challenges
in the landscape, and help in selecting solvers from a portfolio of
algorithms.

We even noticed the potential to transfer knowledge gained on
MO landscapes back to the SO case. As recently proposed in Steinhoff
12

et al. (2020), Aspar et al. (2021), aspects of MOGSA may be utilized
Fig. 7. Schema of (multiobjectivized) single-objective local search based on transferred
MOGSA principles.

for local optimization in the SO domain. As schematically depicted in
Fig. 7, a SO variant of MOGSA may be applied to any SO problem after
the original problem with objective 𝑓1 has been extended to a MOP
by adding a simple but known second objective 𝑓2 (e.g., the sphere
function as proposed in Steinhoff et al., 2020). This multiobjectivization
comes with virtually no costs for evaluating the additional objective
𝑓2, as we can select 𝑓2 such that it is unimodal, the gradient can be
computed directly, and the global optimum is known. As conceptually
shown in Fig. 7, the MO gradient descent of MOGSA could then be used
to reach the vicinity of a (locally) efficient set of 𝑓1 and 𝑓2 (step 1).
From the perimeter of this set, we can try to reach the most efficient
solution w.r.t 𝑓1 by single objective local search (step 2). Thereafter,
we can move along the (locally) efficient set towards 𝑓2 (step 3), and
once the ridge to the superposing (MO) basin of attraction has been
passed, MOGSA is started again to reach the next (local) efficient set
(step 1). This loop can be repeated (in a first naïve approach), until the
(known) optimum of 𝑓2 is reached.

This conceptual proposal exemplarily demonstrates the high po-
tential of new insights into MO landscapes and thus the wider con-
sideration of MO multimodality including local structures. We are
able to propose rather simple techniques that can bypass problems
of SO multimodality by using MO landscape properties like local ef-
ficient sets and ridges between basins of attraction. Certainly, in the
hope to find better solutions faster, the extensions of SO problems to
MOPs has been proposed multiple times before, e.g., refer to Brockhoff
et al. (2007), Tran et al. (2013), Garza-Fabre et al. (2015) and Segura
et al. (2016). However, these approaches often assumed advantages
in multiobjectivization but had no conclusive insight into the MO
landscape. As a consequence, the step of multiobjectivization was
merely complemented by the application of standard MOEAs — not
by dedicated algorithmic concepts that exploited local structures and
landscape properties in a sophisticated and direct way.

We are convinced, that landscape insights open up future algo-
rithmic research perspectives – also in this area – and enable the
community to provide enhancements that can advance MO and SO
problem solving capabilities.

5.4. Performance assessment

Performance assessment of multimodal MO optimizers highly de-
pends on the taken perspective (see Section 1). If multimodality is only
perceived as hindrance to be overcome in order to approximate the
Pareto front as fast and as accurately as possible, one ends up with the
classical unary performance indicators (see below) that are widely used
in MOO such as the Dominated Hypervolume Indicator (HV), (Inverted)
Generational Distance, 𝛥𝑝, etc. (Zitzler and Thiele, 1998; Zitzler et al.,
2003).
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Definition 12 (Performance Indicator and Pareto Compliance). A unary
erformance indicator 𝐼 ∶ (R𝑚) → R is a function on the power set
(R𝑚) of R𝑚, which w.l.o.g. is to be maximized. Further, the perfor-
ance indicator 𝐼 is called Pareto compliant, if and only if the following

mplication holds: ∀𝐴,𝐵 ∈ (R𝑚) with 𝐴 ⪯ 𝐵 and 𝐵  𝐴 ⇒ 𝐼(𝐴) > 𝐼(𝐵).
Similarly, an indicator 𝐼 is called weakly Pareto compliant, if the relation
𝐼(𝐴) > 𝐼(𝐵) is relaxed to 𝐼(𝐴) ≥ 𝐼(𝐵).

Yet, it should be noted that when maximizing a weakly Pareto
compliant indicator (see above) with a finite approximation set, the
pre-image of a maximum might not even be locally efficient at all
since it might occur that 𝐼(𝐴) = 𝐼(𝐵) and 𝐴 ≺ 𝐵 while both 𝐴 and

maximize 𝐼 (locally).
However, in algorithms such as Omni optimizer and the Niching-

ased SMS-EMOA by Shir et al. (2009) decision space diversity is
onsidered as a secondary quality indicator via crowding distance
r an indicator based on pairwise distances between points. Strictly
peaking, such algorithms use mechanisms to increase diversity in the
ecision space but do not explicitly measure the performance of sets.
ost algorithmic approaches discussed in Section 5.3 utilize IGD or

GDX (Zhou et al., 2009). In contrast to IGD, which measures both
onvergence and diversity in objective space, the latter measures how
ell the Pareto optimal set is approximated in the decision space.

Also, Pareto set proximity (PSP) (Yue et al., 2018) and the ratio of
nondominated individuals (RNI) (Kim et al., 2004) are frequently used.

Recently, the discussion of diversity and coverage indicators for set-
oriented optimization has yielded many new insights and potentially
useful indicators. Although these indicators have not all been consid-
ered in MO multimodal optimization they offer interesting options. For
instance, the Riesz 𝑠-energy (Falcón-Cardona et al., 2019) is the sum of
inverse distances of the distance matrix 𝑑𝑖𝑗 , 𝑖 = 1,… , 𝜇, where 𝜇 is the
size of the set of which the diversity has to be measured. It is computed
as ∑

𝑖=1
∑

𝑗>𝑖 1∕𝑑
𝑞
𝑖𝑗 where 𝑞 is an integer constant that is proportional

o the dimension of the embedding decision space. The Riesz 𝑠-energy
has the property that its minimization distributes points uniformly
across manifolds and its computation is scalable in terms of number
of decision variables.

Indicators designed for level set approximation have been discussed
in Emmerich et al. (2013). Level set approximation is the task of
approximating a level set {𝑥 ∈ 𝑋 ∶ 𝑓 (𝑥) ≤ 𝜏} of a function 𝑓 ∶ 𝑋 → R.
In this context decision space diversity is of paramount importance,
but Emmerich et al. (2013) argued that it needs to be distinguished
from representativeness (or set coverage). Diverse approximation sets
maximize gaps between points, and diversity indicators have the ten-
dency of distributing points at the boundary of a feasible domain,
whereas coverage or representedness metrics seek to have a close repre-
sentative in the approximation set for every point in the covered set. As
a consequence, sets that obtain optimum values have more points in the
interior of the level sets as compared to diversity metrics. In this context
diversity indicators (Solow Polaski, gap metrics (cf. Wessing and Preuss,
2016), Weitzman diversity) have been contrasted to coverage metrics
such as a version of the average Hausdorff distance (Schütze et al.,
2012).

The challenge of finding all optima, however, requires sophisticated
and specifically designed performance indicators that simultaneously
take (i) the extent of coverage of all local Pareto fronts (in objective
space), and (ii) an assessment of diversity and coverage in decision
space into account. Ideally, such an indicator shall be Pareto com-
pliant – which still has to be explicitly defined when simultaneously
considering all local fronts – and also offer a possibility for setting the
weights of components, i.e., including experts’ preferences or increasing
importance w.r.t. the rank of the respective local front. Moreover, it
shall explicitly take decision space coverage or diversity into account.

So far, however, such an indicator does not exist. In fact, it also
does not exist for multimodal SO optimization, despite decades of
13

research in this direction. The reason for this is presumably that it is
not at all trivial to define what ‘‘all" optima means in this context. In
practice, benchmarks like the SO niching competition problem set (Li
et al., 2013), which started in the early 2010’s and still is in use as
of 2020, circumvent this problem by focusing on global optima only.
Preuss (2015) also discusses this issue extensively and suggests that the
indicator problem in the multimodal case cannot be boiled down to one
measure. Instead, the fit of a measure depends on the use case, and
the definition of a suitable compromise between diversity and quality
depends on the circumstances.

6. Summary and conclusions

We have found a wide variety of works that deal with multi-
modal MO continuous optimization. However, the majority of these
works followed a perspective that we have summarized as ‘‘finding
all optima’’. Therein, the goal is essentially to find all global (and
eventually local) optima. In contrast to this line of research, a second
stream (‘‘not getting trapped’’) has emerged more recently, which
explicitly focuses on understanding the characteristics of (multimodal)
MO optimization problems. This second stream enables the integration
of problem-specific knowledge into various methods and algorithms,
which in turn have a great potential to improve the state of the art
in MO optimization. Beyond the scope of this work, but definitely
important for future work in the continuous domain – particularly
with respect to landscape analysis and local search methods – is the
incorporation of existing insights and concepts from the multi-objective
(and often inherently multimodal) discrete and combinatorial domains
(e.g., Basseur et al., 2013; Paquete et al., 2007b; Lust and Teghem,
2010; Verel et al., 2011; Liefooghe et al., 2018b).

Benchmarks On the basis of the insights gained from sophisticated
visualization techniques such as gradient-based heatmaps and algorith-
mic approaches that efficiently exploit multimodality (e.g., MOGSA),
we can conclude that almost none of the existing benchmarks contain
MO landscapes which pose severe difficulties in terms of traps which
result in algorithms getting stuck locally. Therefore, there is an urgent
need for a comprehensive and practically relevant benchmark set which
comprises a large and diverse set of MO test problems featuring dif-
ferent kinds of multimodal structures. Apart from designing (ideally
feature-based) generators for artificial multimodal MO test problems,
also real-world problems should be thoroughly inspected and ana-
lyzed for multimodal structures. In this regard, the research expertise
bundled by the Benchmarking Network5 has huge potential.

Landscape analysis and visualization However, in order to con-
struct such a benchmark, various fundamental work is required, espe-
cially w.r.t. problem understanding, visualization and feature design.
Capturing multimodality in terms of specifically designed exploratory
landscape features requires a deep understanding of multimodal struc-
tures and landscape characteristics. This improved problem under-
standing can be achieved, for example, with the help of suitable visual-
ization techniques. Therefore, a crucial prerequisite for feature design
would be an extension of visualization methods in terms of scalability
with objective, as well as the decision space. Here, the challenge of
not loosing too much information along with the involved dimension-
ality reduction techniques has to be faced. Moreover, the sensitivity
w.r.t. the underlying grid resolutions has to be investigated with the
aim of becoming as independent as possible from the resolution level.
This should include the option to adapt the latter locally, if desired,
in order to explicitly focus on specific areas of interest in the search
and/or objective space.

Building on the knowledge gained from the visual inspection of
various kinds of multimodal structures and challenges, specific land-
scape features can be designed with the long-term goal of serving as

5 https://sites.google.com/view/benchmarking-network/.

https://sites.google.com/view/benchmarking-network/
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efficient input for automated algorithm selection and configuration
models (Kerschke et al., 2019a). This includes investigating the po-
tential for generalization of the underlying ideas of features typically
used in single-objective optimization to capture a MOP’s structural
high-level properties. The computation of single-objective features on
a per-objective-basis is certainly not sufficient, as interaction effects of
the objectives lead to specific (possibly also multimodal) structures in
the MO space. In the MO context, synergy effects can also occur through
the transfer of concepts from combinatorial optimization and through
the additional consideration of so-called probing features, which char-
acterize algorithm behavior along initial stages of the optimization
runs. Also, archiving strategies within MO metaheuristics and insights
gained from analyzing paths of local search strategies might be used
for the same purpose.

Algorithm design Similarly, the development of new, as well as the
nhancement of existing algorithms will substantially benefit from
andscape insights, informative features and comprehensive benchmark
ets. With reference to the two different perspectives adopted along
his paper, multiple research angles can be pursued. To overcome local
raps, algorithm design can rely on profound knowledge of local struc-
ures (incl. optima) and will ideally exploit ridges and gradient paths.
ppropriate local search approaches – such as MOGSA and/or im-
roved variants – can be hybridized perspectively with state-of-the art
O meta-heuristics and niching techniques. Of course, in-depth knowl-

dge of the landscape’s characteristics and local structures enables
pecially designed techniques to approach all (or a desired subset of)
ocal and global optima simultaneously. Most probably, multi-objective
pproaches will have to be focused first, which will pave the way
o specifically designed techniques for many-objective optimization
roblems.

nowledge transfer to SO Interestingly, the single-objective opti-
ization domain might also substantially benefit from high-performing
O optimization algorithms which efficiently exploit multimodal struc-

ures. Multiobjectivization of single-objective problems, i.e., adding
ell-suited additional (artificial) objectives and afterwards solving the
O (multimodal) problem, could potentially outperform state-of-the

rt SO optimizers. Initial experiments based on the MOGSA variant
OMOGSA already showed very promising results (Steinhoff et al.,
020; Aspar et al., 2021). Also, a hybridization with state-of-the art
O optimizers in order to overcome stochasticity induced by the initial
earch point should be a matter of future research. However, there is

lack of theory on how to choose the most appropriate additional
bjective function(s) for the SO problem at hand, in order to make the
ultimodal MOP as easy to handle as possible. The resulting Pareto

ront of course comprises the single-objective optimum as well.

lgorithm performance assessment A crucial remaining open ques-
ion of current research, which has a significant impact on the design
f algorithms, is the appropriate assessment of optimization quality
.r.t. multimodality and thus multiple optima. Neither exists a com-
only accepted performance indicator, nor have the theoretical prop-

rties of the existing ones been investigated satisfactorily. Of course,
he optimal choice of the indicator heavily depends on the taken
erspective, i.e., the ‘‘find them all’’ case demands for other indicator
roperties than the ‘‘do not get trapped’’ perspective. The latter stream
asically leads to common MO performance indicators such as the
ominated Hypervolume, while the former essentially represents an
nexplored field of research. In any case, Pareto dominance and the
ossibility to intuitively integrate the preferences of decision makers
re most desirable properties which poses substantial challenges to the
esign of suitable performance indicators. Meeting all these different
spects of performance assessment in this domain might even lead to
erformance indicators which themselves are multi-objective in nature
roviding trade-offs between different performance criteria (Bossek
14

t al., 2020).
Theoretical analyses All these practice-oriented developments are
closely linked to progress in the theory-driven part of this research field.
In the latter, a potential objective for future work is a comparison and
possible unification of the different definitions of locally efficient sets
between the domains of continuous and combinatorial optimization –
e.g., the definitions given in this survey and the ones given in Liefooghe
et al. (2018c). If we find a common terminology, we might be able
to join and exploit synergies between the two areas and ultimately
foster research in both domains. Another interesting line of research
at the intersection of theory and practice are investigations of the
choice of a suitable, problem-specific value 𝜀 (for the 𝜀-neighborhood).
Progress in this area is of great importance as it links the MO problem’s
(true) locally efficient sets and the 𝜀-local efficient sets that were
approximated by the MO algorithm(s). Noticeably, (the numbers of)
these locally efficient sets can differ significantly, depending on the
choice of 𝜀.

Scalability As obvious from the discussion of the current state of mul-
timodal multi-objective optimization, detailed insight into the struc-
tures and challenges of (multimodal) multi-objective landscapes is still
at an early stage, of course offering very promising perspectives due to
recent research developments. However, objective and decision space
dimensionality are assumed to be manageable, i.e., visualization as an
important ingredient reaches its natural limits at 3D. Thus, multimodal
many-objective optimization as a very important research field, either
in terms of large number of objectives or decision variables (or even
both) will have to remain a subsequent step after substantial progress
on the classical multi-objective scenarios. In our view, however, the
ability of MO algorithms to efficiently detect and exploit localness will
even have a larger impact on algorithm performance improvement in
many-objective scenarios.
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