319 research outputs found

    A Multi–Objective Gaining–Sharing Knowledge-Based Optimization Algorithm for Solving Engineering Problems

    Get PDF
    Metaheuristics in recent years has proven its effectiveness; however, robust algorithms that can solve real-world problems are always needed. In this paper, we suggest the first extended version of the recently introduced gaining–sharing knowledge optimization (GSK) algorithm, named multiobjective gaining–sharing knowledge optimization (MOGSK), to deal with multiobjective optimization problems (MOPs). MOGSK employs an external archive population to store the nondominated solutions generated thus far, with the aim of guiding the solutions during the exploration process. Furthermore, fast nondominated sorting with crowding distance was incorporated to sustain the diversity of the solutions and ensure the convergence towards the Pareto optimal set, while the e- dominance relation was used to update the archive population solutions. e-dominance helps provide a good boost to diversity, coverage, and convergence overall. The validation of the proposed MOGSK was conducted using five biobjective (ZDT) and seven three-objective test functions (DTLZ) problems, along with the recently introduced CEC 2021, with fifty-five test problems in total, including power electronics, process design and synthesis, mechanical design, chemical engineering, and power system optimization. The proposed MOGSK was compared with seven existing optimization algorithms, including MOEAD, eMOEA, MOPSO, NSGAII, SPEA2, KnEA, and GrEA. The experimental findings show the good behavior of our proposed MOGSK against the comparative algorithms in particular real-world optimization problems

    A Comparison of Archiving Strategies for Characterization of Nearly Optimal Solutions under Multi-Objective Optimization

    Full text link
    [EN] In a multi-objective optimization problem, in addition to optimal solutions, multimodal and/or nearly optimal alternatives can also provide additional useful information for the decision maker. However, obtaining all nearly optimal solutions entails an excessive number of alternatives. Therefore, to consider the nearly optimal solutions, it is convenient to obtain a reduced set, putting the focus on the potentially useful alternatives. These solutions are the alternatives that are close to the optimal solutions in objective space, but which differ significantly in the decision space. To characterize this set, it is essential to simultaneously analyze the decision and objective spaces. One of the crucial points in an evolutionary multi-objective optimization algorithm is the archiving strategy. This is in charge of keeping the solution set, called the archive, updated during the optimization process. The motivation of this work is to analyze the three existing archiving strategies proposed in the literature (ArchiveUpdateP(Q,epsilon)D(xy), Archive_nevMOGA, and targetSelect) that aim to characterize the potentially useful solutions. The archivers are evaluated on two benchmarks and in a real engineering example. The contribution clearly shows the main differences between the three archivers. This analysis is useful for the design of evolutionary algorithms that consider nearly optimal solutions.This work was supported in part by the Ministerio de Ciencia, Innovacion y Universidades (Spain) (grant number RTI2018-096904-B-I00), by the Generalitat Valenciana regional government through project AICO/2019/055 and by the Universitat Politecnica de Valencia (grant number SP20200109).Pajares-Ferrando, A.; Blasco, X.; Herrero Durá, JM.; Martínez Iranzo, MA. (2021). A Comparison of Archiving Strategies for Characterization of Nearly Optimal Solutions under Multi-Objective Optimization. Mathematics. 9(9):1-28. https://doi.org/10.3390/math9090999S1289

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Multi-Objective Feature Selection With Missing Data in Classification

    Get PDF
    Feature selection (FS) is an important research topic in machine learning. Usually, FS is modelled as a bi-objective optimization problem whose objectives are: 1) classification accuracy; 2) number of features. One of the main issues in real-world applications is missing data. Databases with missing data are likely to be unreliable. Thus, FS performed on a data set missing some data is also unreliable. In order to directly control this issue plaguing the field, we propose in this study a novel modelling of FS: we include reliability as the third objective of the problem. In order to address the modified problem, we propose the application of the non-dominated sorting genetic algorithm-III (NSGA-III). We selected six incomplete data sets from the University of California Irvine (UCI) machine learning repository. We used the mean imputation method to deal with the missing data. In the experiments, k-nearest neighbors (K-NN) is used as the classifier to evaluate the feature subsets. Experimental results show that the proposed three-objective model coupled with NSGA-III efficiently addresses the FS problem for the six data sets included in this study

    A Review of the Family of Artificial Fish Swarm Algorithms: Recent Advances and Applications

    Full text link
    The Artificial Fish Swarm Algorithm (AFSA) is inspired by the ecological behaviors of fish schooling in nature, viz., the preying, swarming, following and random behaviors. Owing to a number of salient properties, which include flexibility, fast convergence, and insensitivity to the initial parameter settings, the family of AFSA has emerged as an effective Swarm Intelligence (SI) methodology that has been widely applied to solve real-world optimization problems. Since its introduction in 2002, many improved and hybrid AFSA models have been developed to tackle continuous, binary, and combinatorial optimization problems. This paper aims to present a concise review of the family of AFSA, encompassing the original ASFA and its improvements, continuous, binary, discrete, and hybrid models, as well as the associated applications. A comprehensive survey on the AFSA from its introduction to 2012 can be found in [1]. As such, we focus on a total of {\color{blue}123} articles published in high-quality journals since 2013. We also discuss possible AFSA enhancements and highlight future research directions for the family of AFSA-based models.Comment: 37 pages, 3 figure

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    MOCHIO: a novel Multi-Objective Coronavirus Herd Immunity Optimization algorithm for solving brushless direct current wheel motor design optimization problem

    Get PDF
    A prominent and realistic problem in magnetics is the optimal design of a brushless direct current (BLDC) motor. A key challenge is designing a BLDC motor to function efficiently with a minimum cost of materials to achieve maximum efficiency. Recently, a new metaheuristic optimization algorithm called the Coronavirus Herd Immunity Optimizer (CHIO) is reported for solving global optimization problems. The inspiration for this technique derives from the idea of herd immunity as a way of combating the coronavirus pandemic. A variant of CHIO called Multi-Objective Coronavirus Herd Immunity Optimizer (MOCHIO) is proposed in this paper, and it is applied to optimize the BLDC motor design optimization problem. A static penalty constraint handling is introduced to handle the constraints, and a fuzzy-based membership function has been introduced to find the best compromise results. The BLDC motor design problem has two main objectives: minimizing the motor mass and maximizing the efficiency with five constraints and five decision/design variables. First, MOCHIO is tested with benchmark functions and then applied to the BLDC motor design problem. The experimental results are compared with other competitors are presented to confirm the viability and dominance of the MOCHIO. Further, six performance metrics are calculated for all algorithms to assess the performances
    • …
    corecore