60 research outputs found
Does self monitoring of blood glucose as opposed to urinalysis provide additional benefit in patients newly diagnosed with type 2 diabetes receiving structured education? The DESMOND SMBG randomised controlled trial protocol
BackgroundThe benefit of self-monitoring of blood glucose (SMBG) in people with type 2 diabetes on diet or oral agents other than sulphonylureas remains uncertain. Trials of interventions incorporating education about self-monitoring of blood glucose have reported mixed results. A recent systematic review concluded that SMBG was not cost-effective. However, what was unclear was whether a cheaper method of self-monitoring (such as urine glucose monitoring) could produce comparable benefit and patient acceptability for less cost.Methods/DesignThe DESMOND SMBG trial is comparing two monitoring strategies (blood glucose monitoring and urine testing) over 18 months when incorporated into a comprehensive self-management structured education programme. It is a multi-site cluster randomised controlled trial, conducted across 8 sites (7 primary care trusts) in England, UK involving individuals with newly diagnosed Type 2 diabetes.The trial has 80% power to demonstrate equivalence in mean HbA1c (the primary end-point) at 18 months of within ± 0.5% assuming 20% drop out and 20% non-consent. Secondary end-points include blood pressure, lipids, body weight and psychosocial measures as well as a qualitative sub-study.Practices were randomised to one of two arms: participants attend a DESMOND programme incorporating a module on self-monitoring of either urine or blood glucose. The programme is delivered by accredited educators who received specific training about equipoise. Biomedical data are collected and psychosocial scales completed at baseline, and 6, 12, and 18 months post programme. Qualitative research with participants and educators will explore views and experiences of the trial and preferences for methods of monitoring.DiscussionThe DESMOND SMBG trial is designed to provide evidence to inform the debate about the value of self-monitoring of blood glucose in people with newly diagnosed type 2 diabetes. Strengths include a setting in primary care, a cluster design, a health economic analysis, a comparison of different methods of monitoring while controlling for other components of training within the context of a quality assured structured education programme and a qualitative sub-study
Lead content and isotopic composition in submound and recent soils of the Volga upland
Literature data on the historical reconstructions of the atmospheric lead deposition in Europe and the isotopic composition of the ores that are potential sources of the anthropogenic lead in the atmospheric deposition in the lower Volga steppes during different time periods have been compiled. The effect of the increasing anthropogenic lead deposition recorded since the Bronze Age on the level of soil contamination has been investigated. For the first time paleosol buried under a burial mound of the Bronze Age has been used as a reference point to assess of the current contamination level. The contents and isotopic compositions of the mobile and total lead have been determined in submound paleosols of different ages and their recent remote and roadside analogues. An increase in the content and fraction of the mobile lead and a shift of its isotopic composition toward less radiogenic values (typical for lead from the recent anthropogenic sources) has been revealed when going from a Bronze-Age paleosol to a recent soil. In the Bronze-Age soil, the isotopic composition of the mobile lead is inherited from the parent rock to a greater extent than in the modern soils, where the lead is enriched with the less radiogenic component. The effect of the anthropogenic component is traced in the analysis of the mobile lead, but it is barely visible for the total lead. An exception is provided by the recent roadside soils characterized by increased contents and the significantly less radiogenic isotopic composition of the mobile and total lead
The genetic architecture of type 2 diabetes
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
Best practice framework for Patient and Public Involvement (PPI) in collaborative data analysis of qualitative mental health research: methodology development and refinement
Background
Patient and Public Involvement (PPI) in mental health research is increasing, especially in early (pre-funding) stages. PPI is less consistent in later stages, including in analysing qualitative data. The aims of this study were to develop a methodology for involving PPI co-researchers in collaboratively analysing qualitative mental health research data with academic researchers, to pilot and refine this methodology, and to create a best practice framework for collaborative data analysis (CDA) of qualitative mental health research.
Methods
In the context of the RECOLLECT Study of Recovery Colleges, a critical literature review of collaborative data analysis studies was conducted, to identify approaches and recommendations for successful CDA. A CDA methodology was developed and then piloted in RECOLLECT, followed by refinement and development of a best practice framework.
Results
From 10 included publications, four CDA approaches were identified: (1) consultation, (2) development, (3) application and (4) development and application of coding framework. Four characteristics of successful CDA were found: CDA process is co-produced; CDA process is realistic regarding time and resources; demands of the CDA process are manageable for PPI co-researchers; and group expectations and dynamics are effectively managed. A four-meeting CDA process was piloted to o-produce a coding framework based on qualitative data collected in RECOLLECT and to create a mental health service user-defined change model relevant to Recovery Colleges. Formal and informal feedback demonstrated active involvement. The CDA process involved an extra 80 person-days of time (40 from PPI coresearchers, 40 from academic researchers).The process was refined into a best practice framework comprising Preparation, CDA and Application phases.
Conclusions
This study has developed a typology of approaches to collaborative analysis of qualitative data in mental health research, identified from available evidence the characteristics of successful involvement, and developed, piloted and refined the first best practice framework for collaborative analysis of qualitative data. This framework has the potential to support meaningful PPI in data analysis in the context of qualitative mental health research studies, a previously neglected yet central part of the research cycle
Vision, challenges and opportunities for a Plant Cell Atlas
With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.</jats:p
Numerical studies of flow over a sill: sensitivity of the non-hydrostatic effects to the grid size
A non-hydrostatic terrain-following model in cross sectional form is applied to study the processes in the lee of a sill in an idealized stratified fjord during super-critical tidal inflow. A sequence of numerical studies with horizontal grid sizes in the range from 100 to 1.5625 m are performed. All experiments are repeated using both hydrostatic and non-hydrostatic versions of the model, allowing a systematic study of possible non-hydrostatic pressure effects and also of the sensitivity of these effects to the horizontal grid size. The length scales and periods of the internal waves in the lee of the sill are gradually reduced and the amplitudes of these waves are increased as the grid size is reduced from 100 down to 12.5 m. With a further reduction in grid size, more short time and space scale motions become superimposed on the internal waves. Associated with the internal wave activity, there is a deeper separation point that is fairly robust to all parameters investigated. Another separation point nearer to the top of the sill appears in the numerical results from the high-resolution studies with the non-hydrostatic model. Associated with this shallower separation point, an overturning vortex appears in the same set of numerical solutions. This vortex grows in strength with reduced grid size in the non-hydrostatic experiments. The effects of the non-hydrostatic pressure on the velocity and temperature fields grow with reduced grid size. In the experiments with horizontal grid sizes equal to 100 or 50 m, the non-hydrostatic pressure effects are small. For smaller grid sizes, the time mean velocity and temperature fields are also clearly affected by the non-hydrostatic pressure adjustments
Population Subdivision in the Gopher Frog (<i>Rana capito</i>) across the Fragmented Longleaf Pine-Wiregrass Savanna of the Southeastern USA
Delineating genetically distinct population segments of threatened species and quantifying population connectivity are important steps in developing effective conservation and management strategies aimed at preventing extinction. The gopher frog (Rana capito) is a xeric-adapted, pond-breeding species endemic to the Gulf and Atlantic coastal plains of the southeastern United States. This species has experienced extensive habitat loss and fragmentation in the formerly widespread longleaf pine-wiregrass savanna where it lives, resulting in individual abundance declines and population extinctions throughout its range. We used individual-based clustering methods along with Bayesian inference of historical migration based on almost 1500 multilocus microsatellite genotypes to examine genetic structure in this taxon. Clustering analyses identified panhandle and peninsular populations in Florida as distinct genetic clusters separated by the Aucilla River, consistent with the division between the Coastal Plain and peninsular mitochondrial lineages, respectively. Analysis of historical migration indicated an east–west population divergence event followed by immigration to the east. Together, our results indicate that the genetically distinct Coastal Plain and peninsular Florida lineages should be considered separately for conservation and management purposes
- …