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Abstract A non-hydrostatic terrain following model in cross sectional form is applied to study the6

processes in the lee of a sill in an idealized stratified fjord during super-critical tidal inflow. A sequence7

of numerical studies with horizontal grid sizes in the range from 100 m to 1.5625 m are performed. All8

experiments are repeated using both hydrostatic and non-hydrostatic versions of the model allowing a9
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systematic study of possible non-hydrostatic pressure effects and also of the sensitivity of these effects1

to the horizontal grid size.2

The length scales and periods of the internal waves in the lee of the sill are gradually reduced and the3

amplitudes of these waves are increased as the grid size is reduced from 100 m down to 12.5 m. With a4

further reduction in grid size, more short time and space scale motions become superimposed on the5

internal waves. Associated with the internal wave activity there is a deeper separation point that is fairly6

robust to all parameters investigated. Another separation point nearer to the top of the sill appear in7

the numerical results from the high resolution studies with the non-hydrostatic model. Associated with8

this shallower separation point, an overturning vortex appear in the same set of numerical solutions.9

This vortex grows in strength with reduced grid size in the non-hydrostatic experiments. The effects10

of the non-hydrostatic pressure on the velocity and temperature fields grow with reduced grid size. In11

the experiments with horizontal grid sizes equal to 100 m or 50m the non-hydrostatic pressure effects12

are small. For smaller grid sizes also the time mean velocity and temperature fields are clearly affected13

by the non-hydrostatic pressure adjustments.14

Keywords Non-hydrostatic · ocean modelling · tides · sills · internal waves · grid resolution15
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1 Introduction1

Numerical ocean models are now widely used both in basic science studies, in studies of the climate,2

in engineering, and in the management of marine resources, see Haidvogel and Beckmann (1999); Kan-3

tha and Clayson (2000); Griffies (2004). Most simulations are presently done with hydrostatic models.4

The hydrostatic assumption simplifies the numerical computations considerably, and has facilitated5

numerous interesting studies of oceanic flow. However, as the horizontal resolution of the ocean mod-6

els is gradually refined with increasing computer power, the validity of the hydrostatic assumption7

may, depending both on the problems addressed and the grid sizes used, become questionable. Non-8

hydrostatic ocean models are therefore used in many recent studies, see for instance Marshall et al.9

(1997b,a); Cummins et al. (2003); Legg and Adcroft (2003); Kanarska and Maderich (2003); Berntsen10

and Furnes (2005); Berntsen et al. (2006); Hodges et al. (2006); Kanarska et al. (2007); Lamb (2007);11

Xing and Davies (2007).12

Since non-hydrostatic models are more complicated and time consuming to use, it will be important13

to establish some guidelines for when it is necessary to include the non-hydrostatic pressure effects.14

Scale analysis may be used to determine such criteria. In Marshall et al. (1997b) the non-hydrostatic15

parameter n = γ2/Ri is suggested. In this expression Ri is the Richardson number, γ is the aspect16

ratio h/L, and h and L are characteristic vertical and horizontal length scales, respectively. If n ≪17

1, the motion is hydrostatic. If the stratification is weak, and processes on small horizontal length18

scales are important, this criterion may not be satisfied, and the use of non-hydrostatic models should19

be considered. However, to model the non-hydrostatic processes, the grid size must also be chosen20

small enough to facilitate a good representation of the phenomena that are influenced by the non-21

hydrostatic pressure effects. Therefore, when considering to apply a non-hydrostatic model, both the22

relevant parameters and length scales of the problem and the grid sizes one may afford to apply should23

be taken into account.24
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One may also consider to compute non-hydrostatic screening parameters to locate areas where non-1

hydrostatic pressure effects may be important. The non-hydrostatic screening parameter may be used2

to decide during run-time where and when the non-hydrostatic pressure and corresponding velocity3

corrections should be computed. Preliminary results based on this approach are presented in Wadzuk4

and Hodges (2004).5

A third approach will be to consider more specifically important physical processes where non-hydrostatic6

pressures are expected to be significant. Focusing on such processes one may run a numerical model7

both with and without non-hydrostatic pressure effects for a range of grid sizes, thus allowing processes8

on gradually smaller scales to play a role as the grid size is reduced. Using this approach, we may9

obtain better qualitative and quantitative information about the non-hydrostatic pressure effects than10

what may be obtained through for instance scale analysis. This approach is used in the present study,11

and the focus is on tidally driven flow over a sill in a stratified fjord or loch. Fjords may be regarded12

as laboratories to investigate baroclinic processes, and in particular processes near sills where energy is13

transferred by non-linear effects from large to small scales and eventually mixing, see for instance Stige-14

brandt (1976); Stigebrandt and Aure (1989); Stigebrandt (1999); Farmer and Freeland (1983); Farmer15

and Armi (1999); Cummins et al. (2003); Stacey and Gratton (2001); Klymak and Gregg (2001, 2003,16

2004); Inall et al. (2004, 2005); Vlasenko et al. (2002).17

The tidally driven processes near Knight Inlet, British Columbia, have in particular been well investi-18

gated using both measurements (Farmer and Armi (1999); Armi and Farmer (2002); Klymak and Gregg19

(2001, 2003, 2004)), and numerical model experiments (Stacey (1985); Cummins (2000); Afanasyev20

and Peltier (2001a); Klymak and Gregg (2003); Cummins et al. (2003); Lamb (2004). Hydrostatic,21

non-hydrostatic, rigid-lid, and free surface models are used, and the studies are performed with both22

slip and no-slip bottom boundary conditions. A wide range of grid sizes, horizontally and vertically, and23

subgrid scale closure schemes is applied in these studies. The sensitivity of the flow to the stratification24

is also investigated. To facilitate high resolution numerical studies, two-dimensional (2D) versions of25
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the numerical models are typically used with grid sizes in the range from approximately 1 to 200 m.1

Important three-dimensional (3D) effects (Klymak and Gregg (2001, 2004)) that also may play an2

important role in the creation of the downstream wedge discussed in several recent papers (Afanasyev3

and Peltier (2001a); Farmer and Armi (2001); Afanasyev and Peltier (2001b)), are neglected in the4

2D studies. To facilitate 3D studies, coarser grids than those used in the 2D studies may have to be5

used. In the process of setting up the 3D model, appropriate grid sizes and turbulence closures have to6

be chosen, and the decision on whether to include non-hydrostatic pressure has to be made. Possible7

consequences of too coarse grid sizes and of neglecting the non-hydrostatic pressure effects should be8

considered.9

Tidally driven processes have also recently been investigated in Loch Etive, see Inall et al. (2004, 2005).10

Motivated by the Loch Etive measurements Xing and Davies (2006a,b), hereafter XD06a and XD06b,11

and Davies and Xing (2007) applied idealised cross sectional models of Loch Etive to get further insight12

into how barotropic tidal energy is converted into internal waves and mixing. The sill depth at Loch13

Etive is approximately 15 m, whereas the corresponding depth at Knight Inlet is approximately 60 m.14

The processes and energy transfers near the sill are affected by the sill depth, and Loch Etive may15

therefore be regarded as a suitable study area for fjords or lochs with sills that are shallower than16

the sill in Knight Inlet. The supercritical stratified tidal flow in Loch Etive is also recently analysed17

in Stashchuk et al. (2007) using a non-hydrostatic model. The importance of non-hydrostatic pressure18

effects for this system is demonstrated in Xing and Davies (2007).19

For tidally forced flow over sills the transfer of energy from the scale of the incoming tide towards the20

scales associated with internal waves, horizontal small scale eddies, overturning rolls, and eventually21

irreversible mixing may be very strong, see for instance Inall et al. (2004); Klymak and Gregg (2004).22

The long range of spatial and temporal scales involved and the strong non-linearities make numerical23

modelling of these systems very challenging. With present computer resources it is not feasible to resolve24
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all relevant scales and one must keep in mind that the numerical results will be sensitive both to the1

grid size and to the choice of subgrid scale closure.2

In the numerical experiments reported in Xing and Davies (2007), the vertical grid size was 1 m and3

the horizontal grid size varied gradually from 10m in the sill region to 100 m outside this area. These4

model simulations were performed with with the MITgcm, see Marshall et al. (1997b,a); Adcroft et al.5

(1999). In Berntsen et al. (2008) the sensitivity of the numerical results for the idealised Loch Etive to6

the grid resolution was investigated using equidistant grid sizes ranging from 100 m to 12.5 m. These7

studies were performed with a cross sectional non-hydrostatic σ-coordinate model, see Berntsen et al.8

(2006). Detailed observations of tidally driven flow near sills reveal small scale process (Farmer and9

Armi (1999)), and we may expect strong non-hydrostatic pressure gradients associated with internal10

waves and instabilities in such systems. One may therefore ask whether the grid sizes used in Xing11

and Davies (2007) were sufficient to capture the full strength of the non-hydrostatic pressure effects.12

In Stashchuk et al. (2007) for instance the horizontal grid size used was 2.5 m.13

The choice of problem for investigation of non-hydrostatic effects may also be based on analysis of14

the rate of change of the vertical velocity Dw
Dt where w is the vertical velocity and D

Dt the material15

derivative. For strong flow over a sill that is short and steep, like the one in Loch Etive, one may expect16

large values of Dw
Dt near the sill and therefore strong non-hydrostatic effects. However, in a numerical17

model, the computed values of w may be regarded as average values of vertical velocity over the grid18

cells. The computed values of w and Dw
Dt will therefore tend to decrease in magnitude with coarser grid19

sizes. For the same reason one may expect that the differences between the results from hydrostatic20

and non-hydrostatic numerical studies of flow over a sill are reduced if the grid size is increased.21

The strength of the non-hydrostatic effects depends on Dw
Dt , which in a numerical model is forced via22

the gradients of the non-hydrostatic pressure by the local divergence or convergence in the model cells.23

The divergence/convergence is in each model cell computed from provisional ’hydrostatic’ velocities,24

see Kanarska and Maderich (2003); Berntsen and Furnes (2005); Kanarska et al. (2007). Both Dw
Dt and25
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the divergence/convergence are strongly affected by the viscosity and diffusivity. To explore some of1

this sensitivity, the numerical experiments to be described are performed with two sets of values for2

viscosity and diffusivity.3

In the present study we follow up previous studies of flow over a sill. The model domain is focused4

more around the sill and thereby studies with equidistant horizontal grid sizes in the range from 100 m5

down to 1.5625 m are facilitated. The sensitivity of the non-hydrostatic pressure effects to the grid size6

is investigated, and possible non-hydrostatic effects on the time mean flow are also studied. The model7

applied is a non-hydrostatic cross sectional σ-coordinate model, see Berntsen et al. (2006).8

The numerical ocean modelling community is moving towards higher resolution, non-hydrostatic mod-9

els, and the viscosities and diffusivities are often reduced with the grid size. The primary objective of10

this study is to examine in a region of significant non-hydrostatic effects, the sensitivity of the computed11

solutions to the grid size and to the non-hydrostatic pressure effects. Although previous studies of flow12

in sill regions have been performed, systematic convergence studies as suggested here have to the au-13

thors knowledge not been undertaken. The insight gained will be particularly important as calculations14

move to 3D where computational limitations will restrict the grid size to relatively coarse grids.15

In Section 2 the numerical experiments are described. A detailed discussion of the results is given in16

Section 3. A summary and a general discussion are given in Section 4.17
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2 The numerical experiments1

The σ-coordinate ocean model applied in the present studies is a two dimensional, (x, z), version of the2

model described in Berntsen (2000) where x and z are the horizontal and vertical Cartesian coordinates3

respectively. The model is available from www.math.uib.no/BOM/. The variables are discretized on a4

C-grid. In the vertical, the standard σ-transformation, σ = z−η
H+η , where η is the surface elevation, and5

H the bottom depth, is applied. For advection of momentum and density a Total Variance Diminishing6

(TVD)-scheme with a superbee limiter described in Yang and Przekwas (1992) is applied in the present7

studies. The standard second order Princeton Ocean Model (POM) method is applied to estimate the8

internal pressure gradients (Blumberg and Mellor (1987); Mellor (1996)). The model is mode split with9

a method similar to the splitting described in Berntsen et al. (1981) and Kowalik and Murty (1993).10

In the 2D model, all variations in the cross channel direction, y, are neglected, and all ∂/∂y terms in11

the governing equations are accordingly set to zero. There will still be cross channel velocities due to12

the Coriolis effect since the Coriolis frequency f is equal to 1.2× 10−4 s−1, a value typical of northern13

latitude regions.14

In the model, the total pressure P is split into three components P = Pη + Pint + PNH where Pη is the15

pressure due to the free surface elevation, Pint is the internal pressure, and PNH is the non-hydrostatic16

pressure. Using a splitting technique, the non-hydrostatic pressure PNH may be computed by inserting17

the expressions for the non-hydrostatic velocity corrections into the equation of continuity (Kanarska18

and Maderich (2003); Heggelund et al. (2004)). Due to the σ-transformation, additional terms appear19

in the pressure equations, which complicates the computations. An alternative method, that has been20

adopted in the present study, is to view the non-hydrostatic pressure directly as PNH(x, σ, t), where21

t is time, or a pressure due to convergence or divergence in the σ-coordinate system (Berntsen and22

Furnes, 2005).23
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The time steps are performed with a predictor-corrector method where the leapfrog method is used as1

the predictor and the fully implicit method is used as the corrector.2

The model has recently been applied to study lock release gravity currents and the propagation of3

solitary waves up an incline (Berntsen et al. (2006)) and the results are related to measurements4

from laboratory experiments and to corresponding results from the MITgcm (Marshall et al., 1997b,a;5

Adcroft et al., 1999). The results produced with the BOM are generally consistent with corresponding6

results from the MITgcm. However, by using a σ-coordinate model a better representation of the7

processes in the bottom boundary layer may be achieved. In Berntsen et al. (2006) more details about8

the estimation of the non-hydrostatic pressure are given. For convergence studies of the BOM see9

Avlesen et al. (2001); Berntsen et al. (2006).10

The set up of the numerical experiments is similar to that described in XD06a and Berntsen et al.11

(2008). The topography and the initial temperature field, Θ, are given in Fig. 1.12

A simple linear equation of state is used to convert temperature to density, see Xing and Davies (2001).13

The initial buoyancy frequency N is 0.01 s−1 in all experiments. For unforced systems and constant14

N , the propagation of internal waves may be studied with linear models, see Cushman-Roisin (1994);15

Kundu and Cohen (2008). However, in the present study with strong tidal forcing of the flow over a16

shallow sill, see below, there will be a strong nonlinear transfer of energy from long to short scales as17

demonstrated and explained in XD06b also with constant buoyancy frequency.18

The depth profile H(x) in meters is specified according to19

H(x) =

8

>

>

<

>

>

:

−50 + 35
1+(x/500)∗∗4 , x < 0

−100 + 85
1+(x/500)∗∗4 , x > 0

(1)

assuming x = 0 m at the top of the sill. The model domain extends from x = -1000 m to x = 2000 m20

and both lateral boundaries are open. For sensitivity of the results to the slope steepness see XD06b.21
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There is no flow through the sea bed. Initially the water elevation is zero, and there is no flow.1

Tidal flow is forced into the model domain through the left open boundary. At this left boundary a2

10 grid cell wide flow relaxation zone (Martinsen and Engedahl (1987)) is added to the computational3

domain. The depth is constant and equal to the depth at x = -1000 m in this zone. In the left boundary4

zone all components of the velocity field, the water elevation, and the temperature field are updated in5

each time step according to6

φ = (1 − α)φint + αφext, (2)

where φint contains the unrelaxed values computed by the model and φext is a specified external value.7

The relaxation parameter α varies smoothly from 0 at x = -1000 m to 1 in the leftmost boundary cell,8

see Martinsen and Engedahl (1987).9

The M2 tide is forced into the domain by specifying an external velocity in the x-direction uext−left(t)10

as11

uext−left(t) = u0 sin(ωM2t) , ∀ z , (3)

where ωM2 = 0.000140526 rad s−1 and u0 = 0.3 m s−1 in all experiments. The tidal forcing and the12

idealized topography is appropriate for Loch Etive and based on recent measurements in the region13

(Inall et al. (2004)). The purpose of the present studies is not to reach steady state, but to investigate14

the non-hydrostatic effects for various horizontal grid sizes. The non-hydrostatic effects vary throughout15

a tidal cycle, but they are similar at corresponding times in consecutive tidal cycles. The focus in this16

study is on the non-hydrostatic effects during the period leading up to maximum flow over the sill, and17

the experiments reported here are run for 1/4 T where T is the M2 tidal period. This means that there18
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is inflow through the left open boundary zone and outflow through the right open boundary zone in the1

whole simulation period. At the left open boundary the external values of the velocity components in2

the y and z directions are zero, and the external values of the temperature are kept equal to the initial3

temperature profile. The external values for the water elevation ηext−left(t) are computed as lateral4

averages of the water elevations η close to the left boundary zone5

ηext−left(t) =
1

10∆x

Z

−1000m+10∆x

−1000m
η(x, t)dx . (4)

At the outflow right boundary, 20 grid cells with constant depth equal to the depth at x = 2000 m are6

added to the computational domain. The first 10 cells are used as an averaging zone, and the rightmost7

10 cells are used as a flow relaxation zone. In the averaging zone the external values for the velocity in8

the x-direction uext−right are computed as lateral averages of the model velocities in the x-direction u9

according to10

uext−right(z, t) =
1

10∆x

Z 2000m+10∆x

2000m
u(x, z, t)dx . (5)

In the right flow relaxation zone equation (2) is used to update the model velocities. In this zone the11

relaxation parameter α varies smoothly from 0 at x = 2000 m + 10∆x to 1 in the rightmost boundary12

cell. The use of equation (2) and this choice of uext−right allows the average interior velocity profile13

to propagate smoothly through the open boundary. This averaging technique was first suggested in14

Berntsen et al. (2002) and is also used to compute external values of the velocity components in y and15

z directions, the water elevation, and the temperature field.16

In the vertical 100 equidistant σ-layers are used in all experiments. Horizontally the grids applied17

are equidistant and the experiments are run with horizontal grid sizes ∆x equal to 100 m, 50 m, 25 m,18

12.5 m, 6.25 m, 3.125 m, and 1.5625 m in order to investigate how the non-hydrostatic effects are affected19
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by the grid size. In the experiments with ∆x = 12.5 m the internal time step used is 0.56 s, and 301

external time steps are used for each internal step. The time steps are scaled proportionally with2

∆x in the experiments with other grid resolutions in order to keep the Courant numbers equal in all3

experiments. One numerical experiment over 1/4 T with ∆x = 1.5625 m takes approximately 200 hours4

on the available computers and this constraint has made longer time integrations very difficult. To5

facilitate studies with this grid size, the length of the computational domain is also substantially6

reduced compared to the length of the domains used in XD06a,b; Davies and Xing (2007); Berntsen7

et al. (2008). With such a short domain, the quality of the results from numerical experiments extended8

over longer time will also be reduced due to false reflections at the open boundaries, see the discussion9

in XD06b. The detailed results from the present studies depend on the the initial flow field and the10

initial stratification. The internal wave field over the first quarter of the second tidal period will for11

instance differ from the corresponding field over the first tidal cycle, and we can not expect to achieve12

a periodic solution. However, by comparing the results at the time of maximum inflow from the first13

tidal cycle presented here with corresponding results from the second tidal cycle presented in XD06a;14

Davies and Xing (2007); Berntsen et al. (2008), we find that the wave patterns in the lee of the sill are15

very similar.16

The experiments are performed with constant values of viscosity and diffusivity as in XD06a, that is:17

horizontal viscosity Ah = 10−1 m2 s−1, vertical viscosity AV = 10−3 m2 s−1, horizontal diffusivity Kh18

= 10−7 m2 s−1, and vertical diffusivity KV = 10−7 m2 s−1. These values of viscosities and diffusivi-19

ties were maintained constant in one set of calculations. The values are small compared to the values20

typically used in ocean models with grid sizes of the order 1 km, and they are small enough to allow21

internal waves in the lee of the sill to be represented. With very small values of vertical and horizontal22

diffusivity, the mixing becomes primarily controlled by convective overturning and instabilities. How-23

ever, due to the cascade of energy towards the grid scale in nonlinear systems, much larger values of24

the viscosities are needed, see XD06a,b; Berntsen et al. (2008). This set of values are in this paper25

referred to as ”small” values. In order to explore the sensitivity to the viscosity and diffusivity, the26
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experiments are repeated with ”large” values of viscosity and diffusivity namely: Ah = 1m2 s−1, AV1

= 10−2 m2 s−1, Kh = 10−3 m2 s−1, and KV = 10−4 m2 s−1. The sensitivity of the numerical results to2

the subgrid scale closure for this tidally driven system was also investigated in more detail in Berntsen3

et al. (2008).4

The choices of viscosities and diffusivities given above are to some extent arbitrary even if there are5

some general guidelines. For instance, the first set of values are large enough to filter out the grid scale6

noise and at the same time small enough to allow the representation of the small scale physical processes7

in the lee of the sill. In studies like this, unique optimal values of the viscosities and the diffusivities8

may not be obtained. The values of these parameters used in comparable studies may differ by orders9

of magnitudes. The differences between the two corresponding sets of results produced with the small10

and the large values may therefore provide some insight in the uncertainties due to the choice of subgrid11

scale closure scheme.12

To identify the sensitivity of the solution and the non-hydrostatic effects to the grid size, the experi-13

ments, with both sets of values of viscosity and diffusivity, are repeated using the hydrostatic assumption14

for all values of ∆x.15

In the experiments, the bottom stress vector τb(x, t) is specified by16

τb(x, t) = ρ0CD

q

u2
b + v2

bub(x, t) (6)

where ρ0 is the reference density, and ub and vb are the velocity components in the x-direction and the17

cross channel direction respectively. The drag coefficient CD is given by18

CD = max[0.0025,
κ2

(ln(zb/z0))2
] (7)
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and zb is the distance of the nearest grid point to the bottom. The von Karman constant κ is 0.4 and1

the bottom roughness parameter is chosen to be z0 = 0.01m, see Blumberg and Mellor (1987).2

The following norm is used to measure the differences between model fields φH produced with the3

hydrostatic model and model fields φNH produced with the non-hydrostatic model4

‖ φH − φNH ‖=

s

1

Area

Z 2000m

0m

Z η(x,t)

H(x)
(φH − φNH)2dxdz , (8)

where Area is the area of the integration domain.5

The differences between instantaneous fields produced with different methods may be large due to small6

shifts in the phase of the internal waves that occur in the lee of the sill during super-critical inflow.7

Therefore, also the time mean fields8

(u, w, Θ) =
1

T/8

Z T/4

T/8
(u, w, Θ)dt , (9)

are computed to investigate whether the changes also affect these more robust means.9

Errors in the internal pressure gradient estimation may be a problem in σ-coordinate models, see for10

instance Haney (1991); Mellor et al. (1998). However, in the present experiments with relatively small11

grid sizes these errors are small. For instance in experiments with ∆x = 100 m where the flow is driven12

only by the artificial internal pressure gradients, the absolute value of the velocity components remains13

smaller than 1 × 10−5 m s−1, see also Berntsen et al. (2008).14
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3 Results1

The results from the calculations show that the maximum tidal velocity u across the sill is larger than2

0.80 m s−1 in all calculations. Using the same definition of the densimetric Froude number Fr as in3

XD06a, that is Fr = u
NHs

where Hs is the sill depth, we find that Fr ∼ 5.3 at maximum inflow, see4

also the discussion in Farmer and Armi (1999) on the definition of the Froude number.5

In Figs. 2 to 8 the instantaneous non-hydrostatic pressure fields PNH at maximum inflow, t = 1/4T ,6

for the experiments with small values of viscosities and diffusivities are given for all grid sizes. In order7

to demonstrate the effects of the non-hydrostatic pressure corrections on the primary model fields, the8

corresponding temperature fields at maximum inflow for both the non-hydrostatic and the hydrostatic9

experiments are also given for identical parameters. The amplitudes of the non-hydrostatic pressure10

oscillations increase as ∆x is reduced down to ∆x = 3.125 m. Notice that the contour interval (CI)11

is increased with reduced values of ∆x down to this grid size. The length scales of these pressure12

oscillations are reduced with decreasing values of the grid size down to at least ∆x = 6.25 m. The flow13

is forced by the gradients in the pressure. Therefore, for the problem considered here we may expect14

gradually stronger non-hydrostatic pressure effects on the primary variables (velocities, temperature,15

and density) as the grid size is reduced from 100 m down to approximately 3.125 m in the studies with16

small values of viscosities and diffusivities. Comparisons of the temperature fields after 1/4 T produced17

with and without the non-hydrostatic corrections of the velocity fields also support this conclusion.18

With ∆x = 100 m, the temperature fields from the hydrostatic and the non-hydrostatic experiments19

are very similar. This suggests that with a coarse grid processes on short wavelengths are smoothed20

out, the horizontal convergence/divergence is reduced, and w and Dw
Dt are reduced. As the grid size is21

reduced, the non-hydrostatic effects on the temperature field become gradually more apparent. With22

a hydrostatic model dispersion due to non-hydrostatic effects is not included, and one may experience23

non-linear steepening of fronts and internal waves. Associated with this, there is a stronger transfer24

of energy towards the shortest possible length scale 2∆x in a hydrostatic model. In Fig. 5c for ∆x =25
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12.5 m we notice this steepening of the waves in the lee of the sill, and this tendency becomes more1

apparent as the grid size is further refined, see Figs. 6c to 8c.2

In the lee of sills, one may in observations find bodies of well mixed fluid, see for instance the discussions3

of the processes generating the downstream wedge in Knight Inlet in Afanasyev and Peltier (2001a);4

Farmer and Armi (2001); Afanasyev and Peltier (2001b). The present studies indicate that with a5

hydrostatic model and sufficient spatial resolution, there may be a stronger transfer of energy towards6

the 2∆x scale, and then to irreversible mixing, that gradually builds up the body of well mixed fluid7

downstream. With a non-hydrostatic model, more of the energy remains in the internal wave field8

generated in the lee during super-critical inflow. With small enough grid sizes, overturning vortices9

that create mixing may be found in the numerical results produced by a non-hydrostatic model, see10

Figs. 7b and 8b. Thus, both types of models may create bodies of well mixed fluid in the lee. However,11

the mechanism when using a hydrostatic model is artificial, and hence it may be dubious to apply such12

a model in more quantitative studies of mixing.13

In all experiments bottom boundary layer separation occurs in the lee of the sill approximately between14

40 m to 65m depth between 400 m and 550 m from the top of the sill, see Figs. 2 to 8. This agrees15

very well with the position of the measured separation point in Loch Etive reported in Inall et al.16

(2004), see their Fig. 5. The numerical separation point is fairly robust to the parameters investigated.17

A horizontal length scale of the horizontal movements of the separation point may be estimated from18

λ =
Lsep

Hsep

U
N , see Afanasyev and Peltier (2001a). Here Lsep is the horizontal extent of the region of19

the slope on the lee side where the separation occur (150 m), Hsep is the corresponding vertical extent20

(32m), and U is a typical current speed near the separation point (0.20 m s−1) giving a length scale λ21

of approximately 125 m consistent with the range found in our numerical studies.22

In the results from all simulations, internal waves are found in the lee of the sill during maximum inflow,23

see Figs. 2 to 8. The length scales of these waves depend on the grid size. The length scales and the24

general shape of the internal waves may also be clearly affected by the non-hydrostatic pressure effects,25
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especially in the high resolution studies. In the results produced with ∆x = 100 m, the length scale of1

the downstream waves is approximately 1000 m in both the hydrostatic and the non-hydrostatic model2

results. With higher horizontal resolution, smaller scale waves may be represented, and we notice that3

the length scale of the waves is gradually reduced from 1000 m to approximately 2-300 m as ∆x is4

reduced to 12.5 m in the non-hydrostatic studies, see Figs. 2b to 5b. In the results produced with the5

non-hydrostatic model and a grid size smaller than 12.5 m, these internal waves with length scales from6

200 m to 300 m are still found, even if also smaller scale oscillations become superimposed on these7

waves as the grid is further refined, see Figs. 6b to 8b. In the results produced with the hydrostatic8

model, we may notice a similar reduction of the length scale of the internal waves as the grid size is9

reduced to ∆x = 12.5 m. However, this length scale is also further reduced in the hydrostatic studies10

with smaller grid sizes than 12.5 m. In the numerical results produced with the hydrostatic model and11

∆x = 1.5625 m, we may notice waves with length scales down to approximately 50m, see Fig. 8c and the12

discussion above on missing non-hydrostatic dispersion and steepening of waves in hydrostatic models.13

The periods and amplitudes of the internal waves in the lee of the sill are correspondingly affected14

by the grid size. This is clearly seen in the time series of the vertical velocities (Fig. 9) taken at a15

point downstream of the sill at (x, z) = (500 m, -20m). For all grid sizes used here, internal waves are16

generated when the flow over the sill becomes super-critical, Fr > 1, approximately after t = 1/8 T (or17

93 minutes). As the vertical oscillations become more sinusoidal, they grow in amplitude, and the period18

is reduced as the grid size is reduced from 100 m to 12.5 m, see Fig. 9a. For ∆x = 12.5 m, the period is19

approximately 7minutes. As the grid size is further reduced from 12.5 m to 6.25 m, the amplitudes of the20

vertical velocity oscillations continue to grow at this point. However, these amplitudes are approximately21

the same in the experiments with ∆x = 6.25 m, 3.125 m, and 1.5625 m. By comparing the results for22

∆x = 12.5 m in Fig. 9a with corresponding results for finer grid sizes in Fig. 9b, it is apparent that with23

smaller ∆x short time scale changes are added to the sinusoidal signals produced with ∆x = 12.5 m,24

even if the periods of approximately 7minutes are still visible in the high resolution results. The vertical25

oscillations are strongly affected by the hydrostatic assumption, see Figs. 9b and 10. With a grid size26
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of 1.5625 m, the periods of these oscillations at (x, z) = (500 m, -20m) are reduced to approximately1

3minutes, consistent with the shorter length scale oscillations seen in Fig. 8c. By comparing Figs.2

9b and 10 we also notice stronger vertical accelerations, ∂W
∂t , and that the negative vertical velocity3

components are much larger in magnitude (∼ 1.5 ms−1) than the corresponding positive velocity4

components in the results from the hydrostatic study. In the hydrostatic experiments, forces from the5

non-hydrostatic pressure gradients acting against the downward flow in the lee are lacking, and the6

downward flow may therefore become unrealistically large in the high resolution hydrostatic studies7

(Fig. 10). See also the comment in Hodges et al. (2006) that improved grid refinement in a hydrostatic8

model may lead to worse results. The maximum values of the vertical velocity components in the non-9

hydrostatic experiments are ∼ 0.65 ms−1. The horizontal velocity components in the lee of the sill10

are of the same order of magnitude (Berntsen et al. (2008)). In the non-hydrostatic experiments these11

values are consistent with rotary overturning rolls as described in Farmer and Armi (1999).12

The focus has so far been on the non-hydrostatic pressure effects on the instantaneous velocity and13

temperature fields. For some applications, where the focus is on the residual flow, it may be more14

relevant to study whether the velocity corrections due to non-hydrostatic pressure also affect the time15

mean fields. In order to investigate this, time means of the velocity components and the temperature16

field are computed, see Equation (9). The means are taken over the last half of the simulation period.17

These time mean fields on the lee side of the sill are given in Figs. 11 and 12. These results are18

produced with ∆x = 1.5625 m, small and constant values of viscosity and diffusivity, and both the19

hydrostatic and non-hydrostatic mean fields are given. The non-hydrostatic pressure corrections clearly20

affect the downstream time mean fields. We notice for instance from Fig. 11 that near the surface in the21

outflow area there is still water warmer than 13 oC in the results from the hydrostatic experiment. The22

corresponding 13 oC contour is missing in the outflow area in the time mean field produced with the23

non-hydrostatic model. The changes on the 12 oC contour by introducing non-hydrostatic pressure are24

also noticeable. These changes in the time mean temperature field may be due to changes in the mixing.25

However, the time mean velocity fields are also affected by the non-hydrostatic pressure corrections,26
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see Fig. 12 and the discussion below, and therefore changes in the advection may also contribute to the1

changes in the time mean temperature field.2

In the non-hydrostatic results, the tongue of high velocity water near the surface extends much further3

downstream from the sill than in the corresponding hydrostatic results, notice for instance the 40 cm s−1
4

isolines in Fig. 12a and 12b. Near the top of the sill, on the downstream side of it, there is also a5

back-flow of water towards the sill in the time mean field from the non-hydrostatic experiment. This6

back-flow is missing in the results from the corresponding hydrostatic experiment. Associated with the7

horizontal back-flow, there is an upward flow of water in the lee of the sill in the time mean velocity8

field from the non-hydrostatic experiment. The computed time mean velocity fields suggest that in the9

non-hydrostatic results there is a strong vortex in the lee of the sill in the period of super-critical flow.10

The non-hydrostatic pressure gradients in the lee near the top of the sill may explain the separation of11

the flow and the generation of a vortex in the non-hydrostatic simulations, see Fig. 8a and the zoom12

in of this pressure in Fig. 13. The build up of the pressure field seen in Fig. 13 may qualitatively be13

understood from the Bernoulli equation, see Kundu and Cohen (2008), which strictly speaking is for14

inviscid, steady, barotropic flows. In the lee below the sill depth, the speed is reduced which means15

build up of a counter pressure and possible flow separation. The flow separation will create higher16

speeds further up in the water column, explaining the negative pressure seen in Fig. 14. The vortex in17

the lee creates enhanced mixing explaining at least partly the non-hydrostatic effects on the time mean18

temperature field (Fig. 11).19

The flow separation in the lee and the overturning roll near the top of the sill are also seen in the plot of20

the instantaneous temperature field from the non-hydrostatic experiment (Fig. 8b) and in some of the21

non-hydrostatic results produced with ∆x larger than 1.5625 m, see Figs. 2b to 7b. However, the vortex22

gradually becomes weaker with a coarser grid, and for ∆x equal to 100 m or 50 m this overturning23

becomes both displaced and much weaker, see Figs. 2b and 3b. Thus with a too coarse grid to resolve24

the vortex, the model tends to filter these motions out.25
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Overturning may also be seen in some of the results produced by the hydrostatic model. During over-1

turning we are using the hydrostatic model outside its domain of validity. Even if this easily may2

create instabilities, models based on the hydrostatic primitive equations may still be able to produce3

instances of inverse stratification. However, the overturning events produced by the hydrostatic model4

in the present study are generally weaker and more distorted than the corresponding events produced5

by the non-hydrostatic model, compare Figs. 7b and 7c and Figs. 8b and 8c.6

The plots of the time mean temperature fields (Fig. 11) suggest that the deeper separation point7

approximately 500 m from the top of the sill is less affected by the non-hydrostatic pressure effects.8

The second order norm, see Equation 8, may be used to measure the non-hydrostatic effects for different9

values of ∆x, see Figs. 14 and 15. The non-hydrostatic effects on the time mean fields are generally much10

smaller than the effects on the instantaneous fields. The instantaneous fields from the non-hydrostatic11

experiments may be out of phase with the corresponding fields from the hydrostatic experiments creat-12

ing fairly large values of this discrepancy measure. These short time scale effects tend to be filtered out13

in the time mean fields. However, there are noticeable non-hydrostatic effects also on the time mean14

fields, especially in the results from the experiments with small and constant values of viscosity and15

diffusivity. The results indicate that the effects on the time mean fields may become stronger as the16

grid size is reduced.17

The non-hydrostatic pressure is driven by the local convergence/divergence into or out of the grid18

cells of the provisional hydrostatic velocity field. This convergence/divergence is strongly affected by19

the choice of viscosities and diffusivities. With large values of viscosity and diffusivity, small scale20

variability in the flow and in the temperature field will be smoothed out. We may expect less small21

scale convergence/divergence, and smaller non-hydrostatic pressure effects. This view may also find22

support in the results given in Figs. 14 and 15. For the smaller values of ∆x, the non-hydrostatic23

pressure effects are much larger in the experiments with small values of viscosity and diffusivity. In24

the numerical experiments with large values of viscosity, the non-hydrostatic effects on the horizontal25



21

velocity field are generally small and also relatively robust to changes in ∆x. For this case, the viscosity1

is large enough to suppress small scale variability in the flow field, and a reduction in ∆x will not2

change the computed flow fields significantly.3

The numerical investigations of non-hydrostatic pressure effects reported in Xing and Davies (2007)4

were performed with ∆x = 10 m near the sill, and with small and constant values of viscosity and5

diffusivity. The results presented here are consistent with their findings. However, the results given in6

Figs. 14 and 15 suggest that a further reduction of ∆x from 10 m would have revealed even stronger7

non-hydrostatic effects.8
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4 Discussion1

In this study the sensitivity of the non-hydrostatic pressure effects to the grid size is explored for the2

case of tidally driven stratified flow over a shallow sill in a loch. The study is motivated by earlier3

studies of the processes in Loch Etive based on both measurements and numerical investigations, see4

Inall et al. (2004, 2005); XD06a,b; Davies and Xing (2007); Xing and Davies (2007); Stashchuk et al.5

(2007); Berntsen et al. (2008). The non-hydrostatic pressure effects depend on the viscosity and the6

diffusivity and this sensitivity is also addressed. The simulations are performed both with a hydrostatic7

and a non-hydrostatic version of a terrain following ocean model, and horizontal grid sizes in the range8

from 100 m to 1.5625 m are used.9

The characteristics of the flow are gradually changed as the grid size is reduced. The length scale of the10

internal waves appearing in the lee of the sill is for instance gradually reduced and the vertical motions11

become more sinusoidal as the grid size is reduced from 100 m to 12.5 m. With a further reduction12

of the grid size, more short time scale signals are gradually superimposed on these sinusoidal internal13

waves. Associated with the internal waves in the lee, there is a flow separation point. The position of14

this point is very robust to the parameters explored, and agrees well with the position of the measured15

separation point in Loch Etive.16

In many studies it may be more important to get the larger scale mean characteristics of the flow and17

the hydrography correct, than to capture all details of the flow. This study shows that there are strong18

non-hydrostatic effects both on the time mean flow field and the time mean density field. Consequently19

a model must have sufficient resolution to resolve the adjustments of the fields by the non-hydrostatic20

pressure.21

In the numerical results produced with the non-hydrostatic model and an adequate grid size, we find22

flow separation also near the top of the sill in the lee, and an overturning vortex associated with the flow23

separation. This vortex is not found in the results from the non-hydrostatic model using grid sizes of24
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100 m or 50 m. This vortex is also found in the time mean fields from the non-hydrostatic experiments,1

but not in the corresponding fields produced with the hydrostatic model. By using the non-hydrostatic2

model and reducing the horizontal grid size from 25m down to 3.125 m, the vortex gradually grows in3

strength. In the results produced with a grid size of 1.5625 m, the overturning roll is almost equal to4

the same roll produced with a grid size of 3.125 m. It would be tempting to conclude from this that5

the essential features of the vortex are resolved with a grid size of 3.125 m. However, this may rather6

indicate that for the finest grid size, the values of viscosity chosen are large enough to prohibit further7

modifications of the vortex. The experiments with even larger values of viscosity and diffusivity also8

show that the importance of the non-hydrostatic model pressure adjustments clearly depend on the9

degree of smoothing of the model fields, and for larger values of viscosity/diffusivity the non-hydrostatic10

effects may not continue to grow as the grid size is reduced.11

In numerical ocean modelling there is a general trend towards higher resolution and non-hydrostatic12

models. Below we will try to put the present work in this wider perspective.13

In large scale ocean modelling based on the Reynolds averaged equations (RANS) with grid sizes larger14

than ∼ 1 km the hydrostatic approximation is valid, see Marshall et al. (1997b). Grid convergence may15

be demonstrated in RANS type simulations by using large values of eddy viscosity and eddy diffusivity.16

In Avlesen et al. (2001) for instance it was shown that the numerical results from the present model17

and the Princeton Ocean Model (POM), see Blumberg and Mellor (1987); Mellor (1996), converged to18

the same solution for density driven flow in a closed basin using large and constant values of viscosity19

and diffusivity.20

At the other end of the spectrum are the DNS (Direct Numerical Simulations) models. Using DNS all21

relevant scales are resolved and parameterizations are not required. The grid size in DNS studies is ∼22

1mm and therefore it is not feasible to apply DNS on ocean scale problems. However, it may still be23

a good approach to test the non-hydrostatic ocean models on laboratory scale problems, see Rickard24
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et al. (2009). In Berntsen et al. (2006) it was also shown that the MITgcm (Marshall et al. (1997b,a))1

and the present model produced grid converged solutions in lock release tank scale experiments.2

A more tractable alternative is to apply Large Eddy Simulations (LES). This will require a grid size3

in all spatial directions of ∼ 1m. In general this will probably not be possible in numerical studies on4

ocean scale within the foreseeable future (Fringer, 2009). The idealised 2D experiments described here5

with ∼ 1.5 m resolution may, however, qualify as LES simulations.6

In the near future it will be more realistic to apply grid sizes in the range between ∼ 1 km and ∼ 1m.7

In this range non-hydrostatic pressure effects may be important, even if they are not fully accounted8

for as in LES or DNS. The focus in this study has been on demonstrating that these non-hydrostatic9

effects may gradually become stronger as the grid size is reduced towards the grid scale associated10

with LES. When using small values of viscosity and diffusivity to allow smaller scale phenomena to11

appear with smaller grid size, grid convergence may have to be sacrificed. With larger values of eddy12

viscosity and eddy diffusivity or weaker tidal forcing, solutions that are robust to the grid size may13

be produced, see Berntsen et al. (2008). However, larger values of viscosity/diffusivity also means that14

real physical phenomena that could have been represented with the chosen grid size, may not appear15

in the numerical results.16

The results from the present studies indicate that for larger grid sizes, 50 m or 100 m in our case with17

tidally driven flow over a sill, the non-hydrostatic pressure effects are relatively small. This finding has18

important consequences for the planning of future 3D experiments for such systems. Unless we can19

afford to apply a small enough horizontal grid size, it may be a waste of computer time to perform 3D20

sill studies with non-hydrostatic models.21

In high resolution DNS studies, one may expect to find important 3D features of the flow superimposed22

on the 2D phenomena described here, see for instance Dörnbrack (1998); Carnevale et al. (2001); Fringer23

and Street (2003); Smyth et al. (2005). The volume of the model domains in DNS studies is, with the24

present computer systems, typically of the order 1m3. Thus it will not be feasible today to perform DNS25
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studies for a realistic sill domain. At present we therefore do not know how much more the numerical1

solutions will change if we continue to refine the grid. However, with a horizontal grid size of 1.5625 m2

we are at least able to represent both the internal waves and the overturning vortices in the lee of the3

sill. Both processes are strongly non-hydrostatic and important for the mixing in the lee of sills, see the4

very interesting discussions on the topic in Afanasyev and Peltier (2001a,b); Farmer and Armi (2001).5

It will be natural to ask for a better validation of the model using both model results and measure-6

ments from the real sill area. Such a comparison requires high resolution measurements from the study7

area. In addition, detailed information about all forcing variables and all details of the topography8

including stones and possible seaweed are needed to force the model and to ensure accurate descrip-9

tions of the depth and the bed stress. Stones, gravel, and seaweed may even interact with the flow and10

complicate a clean comparison between measurements and model results. For the present 2D study,11

the lack of all cross channel variability further complicates a quantitative validation procedure based12

on measurements.13

There is a growing literature pointing at the importance of the interactions between stratified flow14

and topography and the associated irreversible mixing on the meridional overturning circulation, see15

for instance Wunsch (1970); Polzin et al. (1997); Samelson (1998); Munk and Wunsch (1998); Spall16

(2001); Fringer and Street (2003); Kunze and Llewellyn Smith (2004); Wunsch and Ferrari (2004). The17

grid resolution of large scale models will in the foreseeable future be far to coarse to allow a good18

representations of these interactions and the mixing. Consequently the quality of the model outputs19

from the large scale ocean models rely heavily on the quality of the parameterizations of the subgrid scale20

(SGS) processes that they use. The remark made in Griffies (2004): ” there remains a large degree of21

uncertainty in the SGS schemes appropriate for ocean climate simulations” is unfortunately still valid.22

A possible way forward may be to produce model results that capture the essential features of the23

interactions between stratified flow and topography and the associated irreversible mixing, using high24

resolution, non-hydrostatic, preferably 3D, ocean models. Time mean fields of the primary variables may25
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be derived from the high resolution model fields. The exercises may be repeated with hydrostatic coarse1

resolution models to investigate whether the models in combination with the chosen parameterizations2

are able to reproduce the mean fields from the high resolution studies. Fjord or Loch areas may be3

very suitable for such exercises, and possible mismatches may also hopefully lead to improvements of4

the parameterizations.5
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Figure captions10

Fig. 1. Topography and initial temperature field.1

Fig. 2. The non-hydrostatic pressure field PNH (top figure) after 1/4 T for ∆x = 100.0 m for the non-2

hydrostatic experiment with small values of viscosity and diffusivity. Negative pressures are indicated3

with dashed lines. The temperature field after 1/4 T for the same experiment is given in the middle4

figure. The corresponding temperature field for the hydrostatic experiment is given in the bottom figure.5

Fig. 3. As Fig. 2, except ∆x = 50.0 m.6

Fig. 4. As Fig. 2, except ∆x = 25.0 m.7

Fig. 5. As Fig. 2, except ∆x = 12.5 m.8

Fig. 6. As Fig. 2, except ∆x = 6.25 m.9

Fig. 7. As Fig. 2, except ∆x = 3.125 m.10

Fig. 8. As Fig. 2, except ∆x = 1.5625 m.11

Fig. 9. Time series of vertical velocities at (x, z) = (500 m, -20m). The time is given in minutes. The12

results are for the non-hydrostatic experiments with small values of viscosity and diffusivity. In the top13

figure the values for ∆x = 100 m (solid line-small amplitudes), ∆x = 50 m (dotted line), ∆x = 25m14

(dashed line), and ∆x = 12.5 m (solid line-large amplitudes) are given. In the bottom figure the values15

for ∆x = 6.25 m (dotted line), ∆x = 3.125 m (dashed line), and ∆x = 1.5625 m (solid line) are given16

for the last part of the simulation period.17

Fig. 10. Time series of vertical velocities at (x, z) = (500 m, -20m). The time is given in minutes.18

The results are for the hydrostatic experiment with small values of viscosity and diffusivity and ∆x =19

1.5625 m.20
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Fig. 11. The time mean temperature field for the non-hydrostatic experiment with small values of21

viscosity and diffusivity and ∆x = 1.5625 m (top figure), and the corresponding temperature field for1

the hydrostatic experiment in the bottom figure. The time means are taken for the period from 1/8 T2

to 1/4 T.3

Fig. 12. The time mean horizontal velocity field for the non-hydrostatic experiment with small values4

of viscosity and diffusivity and ∆x = 1.5625 m (top figure), and the corresponding velocity field for the5

hydrostatic experiment in the bottom figure.6

Fig. 13. The non-hydrostatic pressure field PNH in the lee of the sill near the top for ∆x = 1.5625 m7

for the non-hydrostatic experiment with small values of viscosity and diffusivity. Negative pressures are8

indicated with dashed lines. The field after 1/4 T is given in a) and the time mean non-hydrostatic9

pressure field is given in b).10

Fig. 14. The norms of the differences between the instantaneous temperature fields after 1/4 T produced11

with the non-hydrostatic model and the corresponding field produced with the hydrostatic model, see12

Equation 8, are given in the top figure as functions of ∆x. The results for the experiments with large13

values of viscosity and diffusivity are given with circles and the results for the experiments with small14

values of viscosity and diffusivity are given with squares. The norms of the corresponding differences15

between the time mean temperature fields, see Equation 9, are given in the bottom figure.16

Fig. 15. The norms of the differences between the instantaneous horizontal velocity fields after 1/4 T17

produced with the non-hydrostatic model and the corresponding field produced with the hydrostatic18

model, see Equation 8, are given in the top figure as functions of ∆x. The results for the experiments19

with large values of viscosity and diffusivity are given with circles and the results for the experiments20

with small values of viscosity and diffusivity are given with squares. The norms of the corresponding21

differences between the time mean horizontal velocity fields, see Equation 9, are given in the bottom22

figure.23
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Fig. 1 Topography and initial temperature field.
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Fig. 2 The non-hydrostatic pressure field PNH (top figure) after 1/4 T for ∆x = 100.0 m for the non-hydrostatic

experiment with small values of viscosity and diffusivity. Negative pressures are indicated with dashed lines.

The temperature field after 1/4 T for the same experiment is given in the middle figure. The corresponding

temperature field for the hydrostatic experiment is given in the bottom figure.
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Fig. 3 As Fig. 2, except ∆x = 50.0m.
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Fig. 4 As Fig. 2, except ∆x = 25.0m.
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Fig. 5 As Fig. 2, except ∆x = 12.5m.
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Fig. 6 As Fig. 2, except ∆x = 6.25m.



35

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

distance [m]

de
pt

h 
[m

]

0

0

0

0

0

0

0

0

0
0

0
0

0
0

0
0 0

0 0
0 0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0

80

80
80 80

80

80

80

80
80 80

80

80
80

80
80

80

80

80

80

80
80

80

80

80

80

80

160

160

16
0

160

160

240 240

P (ci=80 N/m**2)

0

0

0

0
0 0

0

0

0
0

0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0 0

0
0

0

0

0

−
80

−
80 −
80

−
80

−
80 −

80

−
80

−8
0

−
16

0

−
16

0
−

160 −
16

0

−
16

0

−1
60

−160 −
160

−
240

−
24

0−2
40

−240

−3
20

−3
20−320

−320

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

distance [m]

de
pt

h 
[m

]

8.25
8.5

8.75
8.75

9 9

9.25

9.259.
5

9.5

9.75

9.75

9.75

10

10

10

10.25
10.25

10
.2

5

10
.5

10
.5 10

.5

10.75
10

.7
5 10.75

10.75 10.75

11

11 11

11

11

11111111

11

11 11

11.25

11.25

11.25

11.25

11.25
11.25

11.25

11.25

11.25

11.25

11
.2

5

11
.2

5

11.25

11.25

11.5

11
.5

11.5

11
.5

11
.5

11.5

11.5

11
.5

11.511.5

11.5

11.5

11.5

11
.5

11.5

11
.5

11.5

11.75
11.75

11.75

11
.7

5

11.75

11.75

11.75

11
.7

5

11.75

11
.7

5

11.75
11.75

11.75

11.75

11.75

11.75
11.75

11.75

11
.7

5

11.75

12

12
12

12

12
12

12

12 12 12

12

12

12

12

12

12

12

12 12

1212

12

12
12

12

12

12.25

12.25

12.25

12.25

12.25

12.25

12
.2

5

12.25

12.25

12.25

12
.2

5

12
.2

5

12.2512
.2

512.25

12
.2

5
12.25

12
.2

5

12.25

12.25

12
.2

5

12
.2

5

12.5

12
.5

12.5

12.5
12.5

12.5

12.5

12
.5

12
.5

12.512.5

12
.5

12.5

12
.5

12.5

12.5

12
.5

12.75

12.75

12
.7

5

12.7513

T (ci=0.25 C)

(b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

distance [m]

de
pt

h 
[m

]

8.25
8.5

8.75 8.75
9

9

9.25 9.25
9.5

9.5 9.59.75

9.
75 9.75

10

10

10
10.25 10.25 10.2510.5

10.5

10
.5

10.75

10.75

10.75 10
.7

5

10.75

11

11

11

11

11

11 11

11.25

11.25

11
.2

5

11.25 11
.2

5

11.25

11
.2

5

11.5 11.5

11.5

11.5

11
.5

11.5

11.5 11.5

11.5

11.5

11.75

11
.7

5 11.75

11.75

11.75
11.75

11
.7

5

11
.7

5

11
.7

5

11
.7

5

11
.7

5

11
.7

5

11
.7

5

12

12

12 12

12
1212

12 12

12

12

12

12.25

12
.2

5

12.25 12.25

12
.2

5

12.5
12.5

12.5

12.5

12.75 12.75 12.75

12.75

13 13 13
13

T (ci=0.25 C)

(c)

Fig. 7 As Fig. 2, except ∆x = 3.125 m.
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Fig. 8 As Fig. 2, except ∆x = 1.5625 m.
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Fig. 9 Time series of vertical velocities at (x, z) = (500 m, -20m). The time is given in minutes. The results are

for the non-hydrostatic experiments with small values of viscosity and diffusivity. In the top figure the values

for ∆x = 100m (solid line-small amplitudes), ∆x = 50m (dotted line), ∆x = 25m (dashed line), and ∆x =

12.5m (solid line-large amplitudes) are given. In the bottom figure the values for ∆x = 6.25m (dotted line), ∆x

= 3.125 m (dashed line), and ∆x = 1.5625 m (solid line) are given for the last part of the simulation period.
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Fig. 10 Time series of vertical velocities at (x, z) = (500 m, -20m). The time is given in minutes. The results

are for the hydrostatic experiment with small values of viscosity and diffusivity and ∆x = 1.5625 m.
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Fig. 11 The time mean temperature field for the non-hydrostatic experiment with small values of viscosity

and diffusivity and ∆x = 1.5625 m (top figure), and the corresponding temperature field for the hydrostatic

experiment in the bottom figure. The time means are taken for the period from 1/8 T to 1/4T.
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Fig. 12 The time mean horizontal velocity field for the non-hydrostatic experiment with small values of vis-

cosity and diffusivity and ∆x = 1.5625m (top figure), and the corresponding velocity field for the hydrostatic

experiment in the bottom figure.
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Fig. 13 The non-hydrostatic pressure field PNH in the lee of the sill near the top for ∆x = 1.5625 m for the

non-hydrostatic experiment with small values of viscosity and diffusivity. Negative pressures are indicated with

dashed lines. The field after 1/4 T is given in a) and the time mean non-hydrostatic pressure field is given in b)

.
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Fig. 14 The norms of the differences between the instantaneous temperature fields after 1/4 T produced with

the non-hydrostatic model and the corresponding field produced with the hydrostatic model, see Equation 8,

are given in the top figure as functions of ∆x. The results for the experiments with large values of viscosity and

diffusivity are given with circles and the results for the experiments with small values of viscosity and diffusivity

are given with squares. The norms of the corresponding differences between the time mean temperature fields,

see Equation 9, are given in the bottom figure.
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Fig. 15 The norms of the differences between the instantaneous horizontal velocity fields after 1/4 T produced

with the non-hydrostatic model and the corresponding field produced with the hydrostatic model, see Equation

8, are given in the top figure as functions of ∆x. The results for the experiments with large values of viscosity and

diffusivity are given with circles and the results for the experiments with small values of viscosity and diffusivity

are given with squares. The norms of the corresponding differences between the time mean horizontal velocity

fields, see Equation 9, are given in the bottom figure.
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