40 research outputs found

    Combining dark energy survey science verification data with near-infrared data from the ESO VISTA hemisphere survey

    Get PDF
    We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near infrared data from the ESO VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint 7-band (grizYJKgrizYJK) photometric catalogues are produced in a single 3 sq-deg DECam field centred at 02h26m-04d36m where the availability of ancillary multi-wavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factor of \sim4.5 relative to a simple catalogue level matching and results in a \sim1.5 mag increase in the 80\% completeness limit of the NIR data. Almost 70\% of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z1z1. We present example DES+VHS colour selection criteria for high redshift Luminous Red Galaxies (LRGs) at z0.7z\sim0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <<10\% contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5%<0.5\% contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS dataset, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.We thank the referee, Nicholas Cross, for a very useful report on this manuscript. MB acknowledges a postdoctoral fellowship via OL’s Advanced European Research Council Grant (TESTDE). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana- Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundac¸ ˜ao Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol ´ogico and the Minist´erio da Ciˆencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratories, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgen¨ossische Technische Hochschule (ETH) Z¨urich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the Institut de Fisica d’Altes Energies, the Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universit ¨at and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Laboratory, Stanford University, the University of Sussex, and Texas A&M University. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2009-13936, AYA2012- 39559, AYA2012-39620, and FPA2012-39684, which include FEDER funds from the European Union. We are grateful for the extraordinary contributions of our CTIO colleagues and the DES Camera, Commissioning and Science Verification teams in achieving the excellent instrument and telescope conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the DES Data Management organisation. The analysis presented here is based on observations obtained as part of the VISTA Hemisphere Survey, ESO Progam, 179.A- 2010 (PI: McMahon) and data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 179.A-2006 (PI: Jarvis). Data for the OzDES spectroscopic survey were obtained with the Anglo-Australian Telescope (program numbers 12B/11 and 13B/12). Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. TMD acknowledges the support of the Australian Research Council through Future Fellowship, FT100100595.This is the final published version. It first appeared at http://mnras.oxfordjournals.org/content/446/3/2523.abstract

    OzDES reverberation mapping program: Lag recovery reliability for 6-yr C iv analysis

    Get PDF
    We present the statistical methods that have been developed to analyse the OzDES reverberation mapping sample. To perform this statistical analysis we have created a suite of customizable simulations that mimic the characteristics of each source in the OzDES sample. These characteristics include: the variability in the photometric and spectroscopic light curves, the measurement uncertainties, and the observational cadence. By simulating the sources in the OzDES sample that contain the C iv emission line, we developed a set of criteria that rank the reliability of a recovered time-lag depending on the agreement between different recovery methods, the magnitude of the uncertainties, and the rate at which false positives were found in the simulations. These criteria were applied to simulated light curves and these results used to estimate the quality of the resulting Radius-Luminosity relation. We grade the results using three quality levels (gold, silver, and bronze). The input slope of the R-L relation was recovered within 1σ for each of the three quality samples, with the gold standard having the lowest dispersion with a recovered a R-L relation slope of 0.454 ± 0.016 with an input slope of 0.47. Future work will apply these methods to the entire OzDES sample of 771 AGN

    The effect of environment on Type Ia supernovae in the Dark Energy Survey three-year cosmological sample

    Get PDF
    Analyses of Type Ia supernovae (SNe Ia) have found puzzling correlations between their standardized luminosities and host galaxy properties: SNe Ia in high-mass, passive hosts appear brighter than those in lower mass, star-forming hosts. We examine the host galaxies of SNe Ia in the Dark Energy Survey 3-yr spectroscopically confirmed cosmological sample, obtaining photometry in a series of 'local' apertures centred on the SN, and for the global host galaxy. We study the differences in these host galaxy properties, such as stellar mass and rest-frame U - R colours, and their correlations with SN Ia parameters including Hubble residuals. We find all Hubble residual steps to be >3σ in significance, both for splitting at the traditional environmental property sample median and for the step of maximum significance. For stellar mass, we find a maximal local step of 0.098 ± 0.018 mag; ∼0.03 mag greater than the largest global stellar mass step in our sample (0.070 ± 0.017 mag). When splitting at the sample median, differences between local and global U - R steps are small, both ∼0.08 mag, but are more significant than the global stellar mass step (0.057 ± 0.017 mag). We split the data into sub-samples based on SN Ia light-curve parameters: stretch (x1) and colour (c), finding that redder objects (c > 0) have larger Hubble residual steps, for both stellar mass and U - R, for both local and global measurements, of ∼0.14 mag. Additionally, the bluer (star-forming) local environments host a more homogeneous SN Ia sample, with local U - R rms scatter as low as 0.084 ± 0.017 mag for blue (c < 0) SNe Ia in locally blue U - R environments

    The Early Data Release of the Dark Energy Spectroscopic Instrument

    Get PDF
    \ua9 2024. The Author(s). Published by the American Astronomical Society. The Dark Energy Spectroscopic Instrument (DESI) completed its 5 month Survey Validation in 2021 May. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey

    Get PDF
    We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near-infrared (NIR) data from the European Southern Observatory VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint seven-band (grizYJK) photometric catalogues are produced in a single 3 sq-deg dedicated camera field centred at 02h26m−04d36m where the availability of ancillary multiwavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factor of ∼4.5 relative to a simple catalogue level matching and results in a ∼1.5 mag increase in the 80 per cent completeness limit of the NIR data. Almost 70 per cent of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z 1. We present example DES+VHS colour selection criteria for high-redshift luminous red galaxies (LRGs) at z ∼ 0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <10 per cent contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5 per cent contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS data set, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys

    First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases

    Get PDF
    We describe catalog-level simulations of Type Ia supernova (SN~Ia) light curves in the Dark Energy Survey Supernova Program (DES-SN), and in low-redshift samples from the Center for Astrophysics (CfA) and the Carnegie Supernova Project (CSP). These simulations are used to model biases from selection effects and light curve analysis, and to determine bias corrections for SN~Ia distance moduli that are used to measure cosmological parameters. To generate realistic light curves, the simulation uses a detailed SN~Ia model, incorporates information from observations (PSF, sky noise, zero point), and uses summary information (e.g., detection efficiency vs. signal to noise ratio) based on 10,000 fake SN light curves whose fluxes were overlaid on images and processed with our analysis pipelines. The quality of the simulation is illustrated by predicting distributions observed in the data. Averaging within redshift bins, we find distance modulus biases up to 0.05~mag over the redshift ranges of the low-z and DES-SN samples. For individual events, particularly those with extreme red or blue color, distance biases can reach 0.4~mag. Therefore, accurately determining bias corrections is critical for precision measurements of cosmological parameters. Files used to make these corrections are available at this https URL

    First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation

    Get PDF
    We present the analysis underpinning the measurement of cosmological parameters from 207 spectroscopically classified SNe Ia from the first 3 years of the Dark Energy Survey Supernova Program (DES-SN), spanning a redshift range of 0.017 < z < 0.849. We combine the DES-SN sample with an external sample of 122 low-redshift (z < 0.1) SNe Ia, resulting in a "DES-SN3YR" sample of 329 SNe Ia. Our cosmological analyses are blinded: after combining our DES-SN3YR distances with constraints from the Cosmic Microwave Background, our uncertainties in the measurement of the dark energy equation-of-state parameter, w, are 0.042 (stat) and 0.059 (stat+syst) at 68% confidence. We provide a detailed systematic uncertainty budget, which has nearly equal contributions from photometric calibration, astrophysical bias corrections, and instrumental bias corrections. We also include several new sources of systematic uncertainty. While our sample is less than one-third the size of the Pantheon sample, our constraints on w are only larger by 1.4×, showing the impact of the DES-SN Ia light-curve quality. We find that the traditional stretch and color standardization parameters of the DES-SNe Ia are in agreement with earlier SN Ia samples such as Pan-STARRS1 and the Supernova Legacy Survey. However, we find smaller intrinsic scatter about the Hubble diagram (0.077 mag). Interestingly, we find no evidence for a Hubble residual step (0.007 ± 0.018 mag) as a function of host-galaxy mass for the DES subset, in 2.4σ tension with previous measurements. We also present novel validation methods of our sample using simulated SNe Ia inserted in DECam images and using large catalog-level simulations to test for biases in our analysis pipelines

    First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary-Black-hole Merger GW170814

    Get PDF
    We present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in H0=7532+40kms1Mpc1{H}_{0}={75}_{-32}^{+40}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1}, which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find {H}_{0 {78}_{-24}^{+96}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0
    corecore