34 research outputs found

    New infrared star clusters in the Northern and Equatorial Milky Way with 2MASS

    Get PDF
    We carried out a survey of infrared star clusters and stellar groups on the 2MASS J, H and K_s all-sky release Atlas in the Northern and Equatorial Milky Way (350 < l < 360, 0 < l < 230). The search in this zone complements that in the Southern Milky Way (Dutra et al. 2003a). The method concentrates efforts on the directions of known optical and radio nebulae. The present study provides 167 new infrared clusters, stellar groups and candidates. Combining the two studies for the whole Milky Way, 346 infrared clusters, stellar groups and candidates were discovered, whereas 315 objects were previously known. They constitute an important new sample for future detailed studies.Comment: Accepted to Astronomy and Astrophysic

    GM 2-4 - a signpost for low and intermediate mass star formation

    Full text link
    We present a multi-wavelength study of the region towards the GM 2-4 nebula and the nearby source IRAS 05373+2340. Our near-infrared H2 1-0 S(1) line observations reveal various shock-excited features which are part of several bipolar outflows. We identify candidates for the driving sources of the outflows from a comparison of the multi-waveband archival data-sets and SED modelling. The SED spectral slope (\alpha(IRAC)) for all the protostars in the field was then compared with the visual extinction map. This comparison suggests that star formation is progressing from NE to SW across this region

    The IC2118 association: new T Tauri stars in high-latitude molecular clouds

    Full text link
    We identified new pre-main sequence stars in the region of high-latitude molecular clouds associated with the reflection nebula IC2118, around l = 208 degr and b = -27 degr. The stars were selected as T Tauri candidates in objective prism plates obtained with the Schmidt telescope of Konkoly Observatory. Results of spectroscopic follow-up observations, carried out with the FLAIR spectrograph installed on the UK Schmidt and with ALFOSC on Nordic Optical Telescope, are presented in this paper. Based on spectral types, presence of emission lines and lithium absorption line, we identified five classical T Tauri stars and a candidate weak-line T Tauri star projected on the molecular clouds, as well as two candidate pre-main sequence stars outside the nebulous region. Using the near infrared magnitudes obtained from the 2MASS All Sky Catalog. we determined the masses and ages of these stars. We found that the five classical T Tauri stars projected on the clouds are physically related to them, whereas the other stars are probably background objects. Adopting a distance of 210 pc for IC2118 (Kun et al. 2001) and using Palla & Stahler's (1999) evolutionary tracks we derived an average age of 2.5 million yrs and a mass interval of 0.4--1.0 M_sun for the members of the IC2118 association.Comment: 11 pages, 6 figures, accepted for publication by Astronomy and Astrophysic

    Inner disc rearrangement revealed by dramatic brightness variations in the young star PV Cep

    Full text link
    Young Sun-like stars at the beginning of the pre-main sequence (PMS) evolution are surrounded by accretion discs and remnant protostellar envelopes. Photometric and spectroscopic variations of these stars are driven by interactions of the star with the disc. Time scales and wavelength dependence of the variability carry information on the physical mechanisms behind these interactions. We conducted multi-epoch, multi-wavelength study of PV Cep, a strongly variable, accreting PMS star. By combining our own observations from 2004-2010 with archival and literature data, we show that PV Cep started a spectacular fading in 2005, reaching an I_C-band amplitude of 4 mag. Analysis of variation of the optical and infrared fluxes, colour indices, and emission line fluxes suggests that the photometric decline in 2005-2009 resulted from an interplay between variable accretion and circumstellar extinction: since the central luminosity of the system is dominated by accretion, a modest drop in the accretion rate could induce the drastic restructuring of the inner disc. Dust condensation in the inner disc region might have resulted in the enhancement of the circumstellar extinction.Comment: 11 pages, 4 figures, accepted for publication by MNRAS. 3 online tables adde

    The young stellar population in the Serpens Cloud Core: An ISOCAM survey

    Get PDF
    We present results from an ISOCAM survey in the two broad band filters LW2 (5-8.5 mu) and LW3 (12-18 mu) of a 0.13 square degree coverage of the Serpens Main Cloud Core. A total of 392 sources were detected in the 6.7 mu band and 139 in the 14.3 mu band to a limiting sensitivity of ~ 2 mJy. Only about 50% of the mid-IR excess sources show excesses in the near-IR J-H/H-K diagram. In the central Cloud Core the Class I/Class II number ratio is 19/18, i.e. about 10 times larger than in other young embedded clusters such as rho Ophiuchi or Chamaeleon. The mid-IR fluxes of the Class I and flat-spectrum sources are found to be on the average larger than those of Class II sources. Stellar luminosities are estimated for the Class II sample, and its luminosity function is compatible with a coeval population of about 2 Myr which follows a three segment power-law IMF. For this age about 20% of the Class IIs are found to be young brown dwarf candidates. The YSOs are in general strongly clustered, the Class I sources more than the Class II sources, and there is an indication of sub-clustering. The sub-clustering of the protostar candidates has a spatial scale of 0.12 pc. These sub-clusters are found along the NW-SE oriented ridge and in very good agreement with the location of dense cores traced by millimeter data. The smallest clustering scale for the Class II sources is about 0.25 pc, similar to what was found for rho Ophiuchi. Our data show evidence that star formation in Serpens has proceeded in several phases, and that a ``microburst'' of star formation has taken place very recently, probably within the last 10^5 yrs.Comment: 25 pages, 14 figures, accepted by A&A March 18th, see also http://www.not.iac.es/~amanda

    A near IR imaging survey of intermediate and high-mass young stellar outflow candidates

    Full text link
    We have carried out a near-infrared imaging survey of luminous young stellar outflow candidates using the United Kingdom Infrared Telescope. Observations were obtained in the broad band K (2.2 mu) and through narrow band filters at the wavelengths of H_2 v=1--0 S(1) (2.1218 mu) and Br gamma (2.166 mu) lines. Fifty regions were imaged with a field of view of 2.2 X 2.2 arcmin^2. Several young embedded clusters are unveiled in our near-infrared images. 76% of the objects exhibit H_2 emission and 50% or more of the objects exhibit aligned H_2 emission features suggesting collimated outflows, many of which are new detections. These observations suggest that disk accretion is probably the leading mechanism in the formation of stars, at least up to late O spectral types. The young stellar objects responsible for many of these outflows are positively identified in our images based on their locations with respect to the outflow lobes, 2MASS colours and association with MSX, IRAS, millimetre and radio sources. The close association of molecular outflows detected in CO with the H_2 emission features produced by shock excitation by jets from the young stellar objects suggests that the outflows from these objects are jet-driven. Towards strong radio emitting sources, H_2 jets were either not detected or were weak when detected, implying that most of the accretion happens in the pre-UCHII phase; accretion and outflows are probably weak when the YSO has advanced to its UCHII stage.Comment: 64 pages, 53 figures, Accepted for publication in the MNRA

    A Single Distance Sample of Molecular Outflows from High-Mass Young Stellar Objects

    Get PDF
    We have made 12CO 2-1 and 1-0 maps of eleven molecular outflows associated with intermediate to high-mass young stellar objects (YSOs) in order to establish whether the correlations between outflow parameters and source bolometric luminosity hold in the high-mass regime. It is important to consider the effects of Malmquist-type biases when looking at high-mass YSOs, as they are generally much more distant than their low mass counterparts. We therefore chose only objects located at ~2kpc. We find that the relations show much more scatter than is seen in similar studies of low-mass YSOs. We also find that the mass-spectrum is significantly steeper in high-mass outflows, indicating a larger mass-fraction at lower velocities, a low collimation factor (~1-2) and no Hubble-like relationship.Comment: Accepted for publication in A&A, 14 pages, including 13 figure

    Dense gas and the nature of the outflows

    Get PDF
    We present the results of the observations of the (J,K)=(1,1) and the (J,K)=(2,2) inversion transitions of the NH3 molecule toward a large sample of 40 regions with molecular or optical outflows, using the 37 m radio telescope of the Haystack Observatory. We detected NH3 emission in 27 of the observed regions, which we mapped in 25 of them. Additionally, we searched for the 6{16}-5{23} H2O maser line toward six regions, detecting H2O maser emission in two of them, HH265 and AFGL 5173. We estimate the physical parameters of the regions mapped in NH3 and analyze for each particular region the distribution of high density gas and its relationship with the presence of young stellar objects. From the global analysis of our data we find that in general the highest values of the line width are obtained for the regions with the highest values of mass and kinetic temperature. We also found a correlation between the nonthermal line width and the bolometric luminosity of the sources, and between the mass of the core and the bolometric luminosity. We confirm with a larger sample of regions the conclusion of Anglada et al. (1997) that the NH3 line emission is more intense toward molecular outflow sources than toward sources with optical outflow, suggesting a possible evolutionary scheme in which young stellar objects associated with molecular outflows progressively lose their neighboring high-density gas, weakening both the NH3 emission and the molecular outflow in the process, and making optical jets more easily detectable as the total amount of gas decreases.Comment: 27 pages, 37 figures. Accepted for publication in Astronomy and Astrophysics. Abstract is abridge

    Astrophysics in 2005

    Get PDF
    We bring you, as usual, the Sun and Moon and stars, plus some galaxies and a new section on astrobiology. Some highlights are short (the newly identified class of gamma-ray bursts, and the Deep Impact on Comet 9P/ Tempel 1), some long (the age of the universe, which will be found to have the Earth at its center), and a few metonymic, for instance the term "down-sizing" to describe the evolution of star formation rates with redshift
    corecore