810 research outputs found

    Global quantum Hall phase diagram from visibility diagrams

    Full text link
    We propose a construction of a global phase diagram for the quantum Hall effect. This global phase diagram is based on our previous constructions of visibility diagrams in the context of the Quantum Hall Effect. The topology of the phase diagram we obtain is in good agreement with experimental observations (when the spin effect can be neglected). This phase diagram does not show floating.Comment: LaTeX2e, 9 pages, 5 eps figure

    Linear Connections on the Two Parameter Quantum Plane

    Full text link
    We apply a recently proposed definition of a linear connection in non commutative geometry based on the natural bimodule structure of the algebra of differential forms to the case of the two-parameter quantum plane. We find that there exists a non trivial family of linear connections only when the two parameters obeys a specific relation.Comment: 7 pages, Te

    Boundary-induced inhomogeneity of particle layers in the solidification of suspensions

    Full text link
    When a suspension freezes, a compacted particle layer builds up at the solidification front with noticeable implications on the freezing process. In a directional solidification experiment of monodispersed suspensions in thin samples, we evidence a link between the thickness of this layer and the sample depth. We attribute it to an inhomogeneity of particle density induced by the sample plates. A mechanical model enables us to relate it to the layer thickness with a dependency on the sample depth and to select the distribution of particle density that yields the best fit to our data. This distribution involves an influence length of sample plates of about nine particle diameters. These results clarify the implications of boundaries on suspension freezing. They may be useful to model polydispersed suspensions since large particles could play the role of smooth boundaries with respect to small ones.Comment: 16 pages, 13 figure

    Galactic Structure and Radioactivity Source Distributions

    Get PDF
    A probable sky map of the emission from a short-lived isotrope produced by massive stars is presented. The model is based on the nonaxisymmetric component of a dust distribution model developed to reproduce Galactic FIR emission. Features seen in COMPTEL observations are qualitatively reproduced.Comment: 6 pages w/ 4 figures, invited conference paper for "Radioactivities in Astronomy" to be published in New Astronom

    Vortex in Maxwell-Chern-Simons models coupled to external backgrounds

    Full text link
    We consider Maxwell-Chern-Simons models involving different non-minimal coupling terms to a non relativistic massive scalar and further coupled to an external uniform background charge. We study how these models can be constrained to support static radially symmetric vortex configurations saturating the lower bound for the energy. Models involving Zeeman-type coupling support such vortices provided the potential has a "symmetry breaking" form and a relation between parameters holds. In models where minimal coupling is supplemented by magnetic and electric field dependant coupling terms, non trivial vortex configurations minimizing the energy occur only when a non linear potential is introduced. The corresponding vortices are studied numericallyComment: LaTeX file, 2 figure

    Visibility diagrams and experimental stripe structure in the quantum Hall effect

    Full text link
    We analyze various properties of the visibility diagrams that can be used in the context of modular symmetries and confront them to some recent experimental developments in the Quantum Hall Effect. We show that a suitable physical interpretation of the visibility diagrams which permits one to describe successfully the observed architecture of the Quantum Hall states gives rise naturally to a stripe structure reproducing some of the experimental features that have been observed in the study of the quantum fluctuations of the Hall conductance. Furthermore, we exhibit new properties of the visibility diagrams stemming from the structure of subgroups of the full modular group.Comment: 8 pages in plain TeX, 7 figures in a single postscript fil

    The static potential in QED3_3 with non-minimal coupling

    Full text link
    Here we study the effect of the non-minimal coupling j^{\mu}\eps \partial^{\nu} A^{\alpha} on the static potential in multiflavor QED3_3. Both cases of four and two components fermions are studied separately at leading order in the 1/N1/N expansion. Although a non-local Chern-Simons term appears, in the four components case the photon is still massless leading to a confining logarithmic potential similar to the classical one. In the two components case, as expected, the parity breaking fermion mass term generates a traditional Chern-Simons term which makes the photon massive and we have a screening potential which vanishes at large inter-charge distance. The extra non-minimal couplings have no important influence on the static potential at large inter-charge distances. However, interesting effects show up at finite distances. In particular, for strong enough non-minimal coupling we may have a new massive pole in the photon propagator while in the opposite limit there may be no poles at all in the irreducible case. We also found that, in general, the non-minimal couplings lead to a finite range {\bf repulsive} force between charges of opposite signs.Comment: 19 pages and 7 figure

    Galactic Spiral Structure

    Full text link
    We describe the structure and composition of six major stellar streams in a population of 20 574 local stars in the New Hipparcos Reduction with known radial velocities. We find that, once fast moving stars are excluded, almost all stars belong to one of these streams. The results of our investigation have lead us to re-examine the hydrogen maps of the Milky Way, from which we identify the possibility of a symmetric two-armed spiral with half the conventionally accepted pitch angle. We describe a model of spiral arm motions which matches the observed velocities and composition of the six major streams, as well as the observed velocities of the Hyades and Praesepe clusters at the extreme of the Hyades stream. We model stellar orbits as perturbed ellipses aligned at a focus in coordinates rotating at the rate of precession of apocentre. Stars join a spiral arm just before apocentre, follow the arm for more than half an orbit, and leave the arm soon after pericentre. Spiral pattern speed equals the mean rate of precession of apocentre. Spiral arms are shown to be stable configurations of stellar orbits, up to the formation of a bar and/or ring. Pitch angle is directly related to the distribution of orbital eccentricities in a given spiral galaxy. We show how spiral galaxies can evolve to form bars and rings. We show that orbits of gas clouds are stable only in bisymmetric spirals. We conclude that spiral galaxies evolve toward grand design two-armed spirals. We infer from the velocity distributions that the Milky Way evolved into this form about 9 Gyrs ago.Comment: Published in Proc Roy Soc A. A high resolution version of this file can be downloaded from http://papers.rqgravity.net/SpiralStructure.pdf. A simplified account with animations begins at http://rqgravity.net/SpiralStructur
    • …
    corecore