460 research outputs found

    Infrared Classification of Galactic Objects

    Get PDF
    Unbiased analysis shows that IRAS data reliably differentiate between the early and late stages of stellar evolution because objects at these stages clearly segregate in infrared color-color diagrams. Structure in these diagrams is primarily controlled by the density distribution of circumstellar dust. The density profile around older objects is the steepest, declining as r−2r^{-2}, while young objects have profiles that vary as r−3/2r^{-3/2} and flatter. The different density profiles reflect the different dynamics that govern the different environments. Our analysis also shows that high mass star formation is strongly concentrated within \about 5 kpc around the Galactic center, in support of other studies.Comment: 11 pages, 3 Postscript figures (included), uses aaspp4.sty. To appear in Astrophysical Journal Letter

    Pricing Step Options under the CEV and other Solvable Diffusion Models

    Full text link
    We consider a special family of occupation-time derivatives, namely proportional step options introduced by Linetsky in [Math. Finance, 9, 55--96 (1999)]. We develop new closed-form spectral expansions for pricing such options under a class of nonlinear volatility diffusion processes which includes the constant-elasticity-of-variance (CEV) model as an example. In particular, we derive a general analytically exact expression for the resolvent kernel (i.e. Green's function) of such processes with killing at an exponential stopping time (independent of the process) of occupation above or below a fixed level. Moreover, we succeed in Laplace inverting the resolvent kernel and thereby derive newly closed-form spectral expansion formulae for the transition probability density of such processes with killing. The spectral expansion formulae are rapidly convergent and easy-to-implement as they are based simply on knowledge of a pair of fundamental solutions for an underlying solvable diffusion process. We apply the spectral expansion formulae to the pricing of proportional step options for four specific families of solvable nonlinear diffusion asset price models that include the CEV diffusion model and three other multi-parameter state-dependent local volatility confluent hypergeometric diffusion processes.Comment: 30 pages, 16 figures, submitted to IJTA

    Molecular gas and stars in the translucent cloud MBM 18 (LDN 1569)

    Full text link
    Seven of ten candidate H-alpha emission-line stars found in an objective grism survey of a 1 square degree region in MBM 18, were observed spectroscopically. Four of these have weak H-alpha emission, and 6 out of 7 have spectral types M1-M4V. One star is of type F7-G1V, and has H-alpha in absorption. The spectra of three of the M-stars may show an absorption line of LiI, although none of these is an unambiguous detection. For the six M-stars a good fit is obtained with pre-main-sequence isochrones indicating ages between 7.5 and 15Myr. The molecular cloud mass, derived from the integrated 12CO(1-0) emission, is 160Mo (for a distance of 120pc), much smaller than the virial mass (10^3Mo), and the cloud is not gravitationally bound. Nor are the individual clumps we identified through a clump-finding routine. Considering the relative weakness or absence of the H-alpha emission, the absence of other emission lines, and the lack of clear LiI absorption, the targets are not T Tauri stars. With ages between 7.5 and 15Myr they are old enough to explain the lack of lithium in their spectra. Based on the derived distances (60-250pc), some of the stars may lie inside the molecular cloud (120-150pc). From the fact that the cloud as a whole, as well as the individual clumps, are not gravitationally bound, in combination with the ages of the stars we conclude that it is not likely that (these) stars were formed in MBM 18.Comment: Accepted for publication in Astronomy & Astrophysics (20 pages

    Clumpy outer Galaxy molecular clouds and the steepening of the IMF

    Get PDF
    We report the results of high-resolution (~0.2 pc) CO(1-0) and CS(2-1) observations of the central regions of three star-forming molecular clouds in the far-outer Galaxy (~16 kpc from the Galactic Center): WB89 85 (Sh 2-127), WB89 380, and WB89 437. We used the BIMA array in combination with IRAM 30-m and NRAO 12-m observations. The GMC's in which the regions are embedded were studied by means of KOSMA 3-m CO(2-1) observations. The properties the CO and CS clumps are analyzed and compared with newly derived results of previously published single-dish measurements of local clouds (OrionB South and Rosette). We find that the slopes of the clump mass distributions (-1.28 and -1.49, for WB89 85 and WB89 380, respectively) are somewhat less steep than found for most local clouds, but similar to those of clouds which have been analyzed with the same clumpfind program. We investigate the clump stability by using the virial theorem, including all possible contributions (gravity, turbulence, magnetic fields, and pressure due to the interclump gas). It appears that under reasonable assumptions a combination of these forces would render most clumps stable. Comparing only gravity and turbulence, we find that in the far-outer Galaxy clouds, these forces are in equilibium (virial parameter alpha~1) for clumps down to the lowest masses found (a few Msol). For clumps in the local clouds alpha~1 only for clumps with masses larger than a few tens of Msol. Thus it appears that in these outer Galaxy clumps gravity is the dominant force down to a much lower mass than in local clouds, implying that gravitational collapse and star formation may occur more readily even in the smallest clumps. Although there are some caveats, due to the inhomogeneity of the data used, this might explain the apparently steeper IMF found in the outer Galaxy.Comment: 29 pages, including 9 tables, 21 figures. Accepted for Astron. Astrop

    The Radial Extent and Warp of the Ionized Galactic Disk. II. A Likelihood Analysis of Radio-Wave Scattering Toward the Anticenter

    Full text link
    We use radio-wave scattering data to constrain the distribution of ionized gas in the outer Galaxy. Like previous models, our model for the H II disk includes parameters for the radial scale length and scale height of the H II, but we allow the H II disk to warp and flare. Our model also includes the Perseus arm. We use a likelihood analysis on 11 extragalactic sources and 7 pulsars. Scattering in the Perseus arm is no more than 60% of the level contributed by spiral arms in the inner Galaxy, equivalent to a 1 GHz scattering diameter of 1.5 mas. Our analysis favors an unwarped, nonflaring disk with a 1 kpc scale height, though this may reflect the non-uniform and coarse coverage provided by the available data. The lack of a warp indicates that VLBI observations near 1 GHz with an orbiting station having baseline lengths of a few Earth diameters will not be affected by interstellar scattering at Galactic latitudes |b| ~ 15 degrees. The radial scale length is 15--20 kpc, but the data cannot distinguish between a gradual decrease in the electron density and a truncated distribution. We favor a truncated one, because we associate the scattering with massive star formation, which is also truncated near 20 kpc. The distribution of electron density turbulence decreases more rapidly with Galactocentric distance than does the hydrogen distribution. Alternate ionizing and turbulent agents---the intergalactic ionizing flux and satellite galaxies passing through the disk---do not contribute significantly to scattering. We cannot exclude the possibility that a largely ionized, but quiescent disk extends to >~ 100 kpc, similar to that for some Ly-alpha absorbers.Comment: 34 pages, LaTeX2e with AASTeX aaspp4 macro, 9 figures in 9 PostScript files, accepted for publication in Ap

    The distance to a star forming region in the Outer arm of the Galaxy

    Full text link
    We performed astrometric observations with the VLBA of WB89-437, an H2O maser source in the Outer spiral arm of the Galaxy. We measure an annual parallax of 0.167 +/- 0.006 mas, corresponding to a heliocentric distance of 6.0 +/- 0.2 kpc or a Galactocentric distance of 13.4 +/- 0.2 kpc. This value for the heliocentric distance is considerably smaller than the kinematic distance of 8.6 kpc. This confirms the presence of a faint Outer arm toward l = 135 degrees. We also measured the full space motion of the object and find a large peculiar motion of ~20 km/s toward the Galactic center. This peculiar motion explains the large error in the kinematic distance estimate. We also find that WB89-437 has the same rotation speed as the LSR, providing more evidence for a flat rotation curve and thus the presence of dark matter in the outer Galaxy.Comment: The Astrophysical Journal, accepted, 16 pages, 4 Figure

    The occultation events of the Herbig Ae/Be star V1247 Ori

    Full text link
    Aims: I study new deep (DeltaV ~ 1.20-1.65 mag) occultation events of the delta Scuti, Herbig Ae/Be star V1247 Ori in the Ori OB1 b association. Methods: I use the V-band ASAS light curve of V1247 Ori, which covers the last nine years, together with photometric data in the near-ultraviolet, visible, near-, and far-infrared taken from the literature. I carry out a periodogram analysis of the "cleaned" light curve and construct the spectral energy distribution of the star. Results: The star V1247 Ori is interesting for the study of the UX Orionis phenomenon, in which Herbig Ae/Be stars are occulted by their protoplanetary discs, for three reasons: brightness (V ~ 9.85 mag), large infrared excess at 20-100 mum (F_60 ~ 10 Jy), and photometric stability out of occultation (sigma(V) ~ 0.02 mag), which may help to determine the location and spatial structure of the occulting disc clumps.Comment: A&A Letters, in pres

    Galactic interstellar 18O/17O ratios - a radial gradient?

    Full text link
    (Abridged) Our aim is to determine 18O/17O abundance ratios across the entire Galaxy. These provide a measure of the amount of enrichment by high-mass versus intermediate-mass stars. Such ratios, derived from the C18O and C17O J=1-0 lines alone, may be affected by systematic errors. Therefore, the C18O and C17O (1-0), (2-1), and (3-2), as well as the 13CO (1-0) and (2-1) lines, were observed towards 18 prominent galactic targets (a total of 25 positions). The combined dataset was analysed with an LVG model, accounting for optical depth effects. The data cover galactocentric radii R between 0.1 and 16.9 kpc (solar circle at 8.5 kpc). Near the centre of the Galaxy, 18O/17O = 2.88 +/- 0.11. For the galactic disc out to an R of ca. 10 kpc, 18O/17O = 4.16 +/- 0.09. At ca. R = 16.5 kpc, 18O/17O = 5.03 +/- 0.46. Assuming that 18O is synthesised predominantly in high-mass stars (M > 8 Msun), while C17O is mainly a product of lower-mass stars, the ratio from the inner Galaxy indicates a dominance of CNO-hydrogen burning products that is also apparent in the C- and N-isotope ratios. The high 18O/17O value of the solar system (5.5) relative to that of the ambient ISM suggests contamination by nearby high-mass stars during its formation. High values in the metal-poor environment of the outer Galaxy are not matched by the low values observed towards the even more metal-poor LMC. Apparently, the outer Galaxy cannot be considered as an intermediate environment between the solar neighbourhood and the ISM of small metal-poor galaxies. The apparent 18O/17O gradient along the galactic disc and the discrepancy between outer disc and LMC isotope ratios may be explained by different ages of the respective stellar populations.Comment: Accepted by Astron. & Astroph.; 10 pages + 4 pages on-line material (figs

    A star cluster at the edge of the Galaxy

    Get PDF
    We study stars and molecular gas in the direction of IRAS06145+1455 (WB89-789) through NIR (JHK), molecular line-, and dust continuum observations. The kinematic distance of the associated molecular cloud is 11.9 kpc. With a galactocentric distance of about 20.2 kpc, this object is at the edge of the (molecular) disk of the Galaxy. The near-IR data show the presence of an (embedded) cluster of about 60 stars, with a radius ca. 1.3 pc and an average stellar surface density of ca. 12 pc^{-2}. We find at least 14 stars with NIR-excess, 3 of which are possibly Class I objects. The cluster is embedded in a 1000 Mo molecular/dust core, from which a molecular outflow originates. The temperature of most of the outflowing gas is < 40 K, and the total mass of the swept-up material is < 10 Mo. Near the center of the flow, indications of much higher temperatures are found, probably due to shocks. A spectrum of one of the probable cluster members shows a tentative likeness to that of a K3III-star (with an age of at least 20 Myr). If correct, this would confirm the kinematic distance. This cluster is the furthest one from the Galactic center yet detected. The combination of old and recent activity implies that star formation has been going on for at least 20 Myr, which is difficult to understand considering the location of this object, where external triggers are either absent or weak, compared to the inner Galaxy. This suggests that once star formation is occurring, later generations of stars may form through the effect of the first generation of stars on the (remnants of) the original molecular cloud
    • 

    corecore