340 research outputs found
Systemic sclerosis associated interstitial lung disease - individualized immunosuppressive therapy and course of lung function: results of the EUSTAR group
BACKGROUND: Interstitial lung disease in systemic sclerosis (SSc-ILD) is a major cause of SSc-related death. Imunosuppressive treatment (IS) is used in patients with SSc for various organ manifestations mainly to ameliorate progression of SSc-ILD. Data on everyday IS prescription patterns and clinical courses of lung function during and after therapy are scarce.
METHODS: We analysed patients fulfilling American College of Rheumatology (ACR)/European League against Rheumatism (EULAR) 2013 criteria for SSc-ILD and at least one report of IS. Types of IS, pulmonary function tests (PFT) and PFT courses during IS treatment were evaluated.
RESULTS: EUSTAR contains 3778/11,496 patients with SSc-ILD (33%), with IS in 2681/3,778 (71%). Glucocorticoid (GC) monotherapy was prescribed in 30.6% patients with GC combinations plus cyclophosphamide (CYC) (11.9%), azathioprine (AZA) (9.2%), methotrexate (MTX) (8.7%), or mycophenolate mofetil (MMF) (7.3%). Intensive IS (MMF + GC, CYC or CYC + GC) was started in patients with the worst PFTs and ground glass opacifications on imaging. Patients without IS showed slightly less worsening in forced vital capacity (FVC) when starting with FVC 50-75% or >75%. GC showed negative trends when starting with FVC <50%. Regarding diffusing capacity for carbon monoxide (DLCO), negative DLCO trends were found in patients with MMF.
CONCLUSIONS: IS is broadly prescribed in SSc-ILD. Clusters of clinical and functional characteristics guide individualised treatment. Data favour distinguished decision-making, pointing to either watchful waiting and close monitoring in the early stages or start of immunosuppressive treatment in moderately impaired lung function. Advantages of specific IS are difficult to depict due to confounding by indication. Data do not support liberal use of GC in SSc-ILD
Transverse-energy distributions at midrapidity in , Au, and AuAu collisions at --200~GeV and implications for particle-production models
Measurements of the midrapidity transverse energy distribution, d\Et/d\eta,
are presented for , Au, and AuAu collisions at
GeV and additionally for AuAu collisions at
and 130 GeV. The d\Et/d\eta distributions are first
compared with the number of nucleon participants , number of
binary collisions , and number of constituent-quark participants
calculated from a Glauber model based on the nuclear geometry. For
AuAu, \mean{d\Et/d\eta}/N_{\rm part} increases with , while
\mean{d\Et/d\eta}/N_{qp} is approximately constant for all three energies.
This indicates that the two component ansatz, , which has been used to represent
distributions, is simply a proxy for , and that the term
does not represent a hard-scattering component in distributions. The
distributions of AuAu and Au are then calculated from
the measured distribution using two models that both reproduce
the AuAu data. However, while the number-of-constituent-quark-participant
model agrees well with the Au data, the additive-quark model does not.Comment: 391 authors, 24 pages, 19 figures, and 15 Tables. Submitted to Phys.
Rev. C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are publicly available at
http://www.phenix.bnl.gov/papers.htm
Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at √s = 8 TeV
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMA measurement is presented of differential cross sections for Higgs boson (H) production in pp collisions at √s = 8TeV. The analysis exploits the H→γγ decay in data corresponding to an integrated luminosity of 19.7fb-1 collected by the CMS experiment at the LHC. The cross section is measured as a function of the kinematic properties of the diphoton system and of the associated jets. Results corrected for detector effects are compared with predictions at next-to-leading order and next-to-next-to-leading order in perturbative quantum chromodynamics, as well as with predictions beyond the standard model. For isolated photons with pseudorapidities |η|1/3 and >1/4, the total fiducial cross section is 32±10fbWe acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23- 6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET(European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foun-dation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS program of the National Science Center (Poland); the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National PrioritiesResearch Program by QatarNationalResearch Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-184
Searches for supersymmetry using the M-T2 variable in hadronic events produced in pp collisions at 8 TeV
Peer reviewe
Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at √s=8 TeV
Peer reviewe
Measurement of the W+W− cross section in pp collisions at s√=7 TeV and limits on anomalous WWγ and WWZ couplings
A measurement of W+W− production in pp collisions at s√=7 TeV is presented. The data were collected with the CMS detector at the LHC, and correspond to an integrated luminosity of 4.92±0.11 fb−1. The W+W− candidates consist of two oppositely charged leptons, electrons or muons, accompanied by large missing transverse energy. The W+W− production cross section is measured to be 52.4±2.0 (stat.)±4.5 (syst.)±1.2 (lum.) pb. This measurement is consistent with the standard model prediction of 47.0±2.0 pb at next-to-leading order. Stringent limits on the WWγ and WWZ anomalous triple gauge-boson couplings are set
Natural History and Predictors of Progression to Sjögren's Syndrome Among Participants of the Sjögren's International Collaborative Clinical Alliance Registry
ObjectiveTo explore changes in the phenotypic features of Sjögren's syndrome (SS), and in SS status among participants in the Sjögren's International Collaborative Clinical Alliance (SICCA) registry over a 2-3-year interval.MethodsAll participants in the SICCA registry who were found to have any objective measures of salivary hypofunction, dry eye, focal lymphocytic sialadenitis in minor salivary gland biopsy, or anti-SSA/SSB antibodies were recalled over a window of 2 to 3 years after their baseline examinations to repeat all clinical examinations and specimen collections to determine whether there was any change in phenotypic features and in SS status.ResultsAs of September 15, 2013, a total of 3,514 participants had enrolled in SICCA, and among 3,310 eligible, 771 presented for a followup visit. Among participants found to have SS using the 2012 American College of Rheumatology (ACR) classification criteria, 93% again met the criteria after 2 to 3 years, and this proportion was 89% when using the 2016 ACR/European League Against Rheumatism (EULAR) criteria. Among those who did not meet ACR or ACR/EULAR criteria at baseline, 9% and 8%, respectively, had progressed and met them at followup. Those with hypergammaglobulinemia and hypocomplementemia at study entry were, respectively, 4 and 6 times more likely to progress to SS by ACR criteria than those without these characteristics (95% confidence interval 1.5-10.1 and 1.8-20.4, respectively).ConclusionWhile there was stability over a 2-3-year period of both individual phenotypic features of SS and of SS status, hypergammaglobulinemia and hypocomplementemia at study entry were predictive of progression to SS
First Measurement of Antideuteron Number Fluctuations at Energies Available at the Large Hadron Collider
The first measurement of event-by-event antideuteron number fluctuations in high energy heavy-ion collisions is presented. The measurements are carried out at midrapidity (1?1 < 0.8) as a function of collision centrality in Pb-Pb collisions atv (NN)-N-s= 5.02 TeV using the ALICE detector. A significant negative correlation between the produced antiprotons and antideuterons is observed in all collision centralities. The results are compared with a state-of-the-art coalescence calculation. While it describes the ratio of higher order cumulants of the antideuteron multiplicity distribution, it fails to describe quantitatively the magnitude of the correlation between antiproton and antideuteron production. On the other hand, thermal-statistical model calculations describe all the measured observables within uncertainties only for correlation volumes that are different with respect to those describing proton yields and a similar measurement of net-proton number fluctuations
K∗(892)0 and φ(1020) production at midrapidity in pp collisions at √s = 8 TeV
The production of K∗(892)0 and φ(1020) in pp collisions at √s = 8 TeV was measured by using Run 1 data collected by the ALICE collaboration at the CERN Large Hadron Collider (LHC). The pT-differential yields d2N/dyd pT in the range 0 < pT < 20 GeV/c for K∗0 and 0.4 < pT < 16 GeV/c for φ have been measured at midrapidity, |y| < 0.5. Moreover, improved measurements of the K∗0 (892) and φ(1020) at √s = 7 TeV are presented. The collision energy dependence of pT distributions, pT-integrated yields, and particle ratios in inelastic pp collisions are examined. The results are also compared with different collision systems. The values of the particle ratios are found to be similar to those measured at other LHC energies. In pp collisions a hardening of the particle spectra is observed with increasing energy, but at the same time it is also observed that the relative particle abundances are independent of the collision energy. The pT-differential yields of K∗0 and φ in pp collisions at √s = 8 TeV are compared with the expectations of different Monte Carlo event generators
Two-particle transverse momentum correlations in pp and p-Pb collisions at energies available at the CERN Large Hadron Collider
Two-particle transverse momentum differential correlators, recently measured in Pb-Pb collisions at energies available at the CERN Large Hadron Collider (LHC), provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behavior. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at √s=7TeV and √sNN=5.02TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p-Pb to Pb-Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed
- …
