731 research outputs found

    Characterization of the RNA-binding properties of the triple-gene-block protein 2 of Bamboo mosaic virus

    Get PDF
    The triple-gene-block protein 2 (TGBp2) of Bamboo mosaic virus (BaMV) is a transmembrane protein which was proposed to be involved in viral RNA binding during virus transport. Here, we report on the RNA-binding properties of TGBp2. Using tyrosine fluorescence spectroscopy and UV-crosslinking assays, the TGBp2 solubilized with Triton X-100 was found to interact with viral RNA in a non-specific manner. These results raise the possibility that TGBp2 facilitates intracellular delivery of viral RNA through non-specific protein-RNA interaction

    The Stable Association of Virion with the Triple-geneblockProtein 3-based Complex of Bamboo mosaic virus

    Get PDF
    The triple-gene-block protein 3 (TGBp3) of Bamboo mosaic virus (BaMV) is an integral endoplasmic reticulum (ER) membraneprotein which is assumed to form a membrane complex to deliver the virus intracellularly. However, the virus entity that isdelivered to plasmodesmata (PD) and its association with TGBp3-based complexes are not known. Results from chemicalextraction and partial proteolysis of TGBp3 in membrane vesicles revealed that TGBp3 has a right-side-out membranetopology; i.e., TGBp3 has its C-terminal tail exposed to the outer surface of ER. Analyses of the TGBp3-specificimmunoprecipitate of Sarkosyl-extracted TGBp3-based complex revealed that TGBp1, TGBp2, TGBp3, capsid protein (CP),replicase and viral RNA are potential constituents of virus movement complex. Substantial co-fractionation of TGBp2, TGBp3and CP, but not TGBp1, in the early eluted gel filtration fractions in which virions were detected after TGBp3-specificimmunoprecipitation suggested that the TGBp2- and TGBp3-based complex is able to stably associate with the virion. Thisnotion was confirmed by immunogold-labeling transmission electron microscopy (TEM) of the purified virions. In addition,mutational and confocal microscopy analyses revealed that TGBp3 plays a key role in virus cell-to-cell movement byenhancing the TGBp2- and TGBp3-dependent PD localization of TGBp1. Taken together, our results suggested that the cellto-cell movement of potexvirus requires stable association of the virion cargo with the TGBp2- and TGBp3-based membranecomplex and recruitment of TGBp1 to the PD by this complex

    Low neutrophil-to-lymphocyte ratio predicts overall survival benefit in advanced NSCLC patients with low PD-L1 expression and receiving chemoimmunotherapy

    Get PDF
    Although combination therapy including chemotherapy and immune checkpoint inhibitors (ICIs) improves overall survival (OS) of patients with non-small-cell lung cancer (NSCLC), there is a higher incidence of adverse events and treatment discontinuation. Since programmed death-ligand 1 (PD-L1) could not serve as a predictive biomarker, we investigated the neutrophil-to-lymphocyte ratio (NLR) as a predictive biomarker. In our previous research, we demonstrated that a low NLR could predict survival benefits when patients with high PD-L1 expression (> 50%) received chemoimmunotherapy as opposed to immunotherapy alone. In this current study, our objective is to evaluate this predictive capacity in patients with low PD-L1 expression (< 50%). A total of 142 patients were enrolled, 28 receiving combination therapy and 114 receiving chemotherapy alone. Progression-free survival (PFS) and OS were estimated using the Kaplan-Meier method and compared using the log-rank test. Patients who received combination therapy had significantly better PFS and OS than those who received monotherapy. In the subgroup of patients with low NLR, those who received combination therapy exhibited extended PFS and OS with clinical significance, which was also confirmed by multivariate Cox regression analysis. Our study demonstrates the potential use of NLR as a biomarker for predicting survival benefits when receiving combination therapy with chemotherapy and ICIs in patients with advanced NSCLC and low PD-L1 expression

    Clinical radiomics-based machine learning versus three-dimension convolutional neural network analysis for differentiation of thymic epithelial tumors from other prevascular mediastinal tumors on chest computed tomography scan

    Get PDF
    PurposeTo compare the diagnostic performance of radiomic analysis with machine learning (ML) model with a convolutional neural network (CNN) in differentiating thymic epithelial tumors (TETs) from other prevascular mediastinal tumors (PMTs).MethodsA retrospective study was performed in patients with PMTs and undergoing surgical resection or biopsy in National Cheng Kung University Hospital, Tainan, Taiwan, E-Da Hospital, Kaohsiung, Taiwan, and Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan between January 2010 and December 2019. Clinical data including age, sex, myasthenia gravis (MG) symptoms and pathologic diagnosis were collected. The datasets were divided into UECT (unenhanced computed tomography) and CECT (enhanced computed tomography) for analysis and modelling. Radiomics model and 3D CNN model were used to differentiate TETs from non-TET PMTs (including cyst, malignant germ cell tumor, lymphoma and teratoma). The macro F1-score and receiver operating characteristic (ROC) analysis were performed to evaluate the prediction models.ResultIn the UECT dataset, there were 297 patients with TETs and 79 patients with other PMTs. The performance of radiomic analysis with machine learning model using LightGBM with Extra Tree (macro F1-Score = 83.95%, ROC-AUC = 0.9117) had better performance than the 3D CNN model (macro F1-score = 75.54%, ROC-AUC = 0.9015). In the CECT dataset, there were 296 patients with TETs and 77 patients with other PMTs. The performance of radiomic analysis with machine learning model using LightGBM with Extra Tree (macro F1-Score = 85.65%, ROC-AUC = 0.9464) had better performance than the 3D CNN model (macro F1-score = 81.01%, ROC-AUC = 0.9275).ConclusionOur study revealed that the individualized prediction model integrating clinical information and radiomic features using machine learning demonstrated better predictive performance in the differentiation of TETs from other PMTs at chest CT scan than 3D CNN model

    Cardiac Myosin Binding Protein C and MAP-Kinase Activating Death Domain-Containing Gene Polymorphisms and Diastolic Heart Failure

    Get PDF
    OBJECTIVE: Myosin binding protein C (MYBPC3) plays a role in ventricular relaxation. The aim of the study was to investigate the association between cardiac myosin binding protein C (MYBPC3) gene polymorphisms and diastolic heart failure (DHF) in a human case-control study. METHODS: A total of 352 participants of 1752 consecutive patients from the National Taiwan University Hospital and its affiliated hospital were enrolled. 176 patients diagnosed with DHF confirmed by echocardiography were recruited. Controls were matched 1-to-1 by age, sex, hypertension, diabetes, renal function and medication use. We genotyped 12 single nucleotide polymorphisms (SNPs) according to HapMap Han Chinese Beijing databank across a 40 kb genetic region containing the MYBPC3 gene and the neighboring DNA sequences to capture 100% of haplotype variance in all SNPs with minor allele frequencies ≥ 5%. We also analyzed associations of these tagging SNPs and haplotypes with DHF and linkage disequilibrium (LD) structure of the MYBPC3 gene. RESULTS: In a single locus analysis, SNP rs2290149 was associated with DHF (allele-specific p = 0.004; permuted p = 0.031). The SNP with a minor allele frequency of 9.4%, had an odds ratio 2.14 (95% CI 1.25-3.66; p = 0.004) for the additive model and 2.06 for the autosomal dominant model (GG+GA : AA, 95% CI 1.17-3.63; p = 0.013), corresponding to a population attributable risk fraction of 12.02%. The haplotypes in a LD block of rs2290149 (C-C-G-C) was also significantly associated with DHF (odds ratio 2.10 (1.53-2.89); permuted p = 0.029). CONCLUSIONS: We identified a SNP (rs2290149) among the tagging SNP set that was significantly associated with early DHF in a Chinese population

    Mitochondrial DNA Instability and Metabolic Shift in Human Cancers

    Get PDF
    A shift in glucose metabolism from oxidative phosphorylation to glycolysis is one of the biochemical hallmarks of tumor cells. Mitochondrial defects have been proposed to play an important role in the initiation and/or progression of various types of cancer. In the past decade, a wide spectrum of mutations and depletion of mtDNA have been identified in human cancers. Moreover, it has been demonstrated that activation of oncogenes or mutation of tumor suppressor genes, such as p53, can lead to the upregulation of glycolytic enzymes or inhibition of the biogenesis or assembly of respiratory enzyme complexes such as cytochrome c oxidase. These findings may explain, at least in part, the well documented phenomena of elevated glucose uptake and mitochondrial defects in cancers. In this article, we review the somatic mtDNA alterations with clinicopathological correlations in human cancers, and their potential roles in tumorigenesis, cancer progression, and metastasis. The signaling pathways involved in the shift from aerobic metabolism to glycolysis in human cancers are also discussed

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model
    corecore