
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Alla Reznik,
Lakehead University, Canada

REVIEWED BY

YuChuan Hu,
Fourth Military Medical University, China
Wei Yang,
Beijing Cancer Hospital, Peking University,
China

*CORRESPONDENCE

Yi-Ting Yen

b85401067@gmail.com

Mi-Chia Ma

mcma@mail.ncku.edu.tw

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

RECEIVED 22 November 2022
ACCEPTED 27 March 2023

PUBLISHED 18 April 2023

CITATION

Chang C-C, Tang E-K, Wei Y-F, Lin C-Y,
Wu F-Z, Wu M-T, Liu Y-S, Yen Y-T,
Ma M-C and Tseng Y-L (2023) Clinical
radiomics-based machine learning versus
three-dimension convolutional neural
network analysis for differentiation of
thymic epithelial tumors from other
prevascular mediastinal tumors on chest
computed tomography scan.
Front. Oncol. 13:1105100.
doi: 10.3389/fonc.2023.1105100

COPYRIGHT

© 2023 Chang, Tang, Wei, Lin, Wu, Wu, Liu,
Yen, Ma and Tseng. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 18 April 2023

DOI 10.3389/fonc.2023.1105100
Clinical radiomics-based machine
learning versus three-dimension
convolutional neural network
analysis for differentiation of
thymic epithelial tumors from
other prevascular mediastinal
tumors on chest computed
tomography scan
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Purpose: To compare the diagnostic performance of radiomic analysis with

machine learning (ML) model with a convolutional neural network (CNN) in

differentiating thymic epithelial tumors (TETs) from other prevascular mediastinal

tumors (PMTs).

Methods: A retrospective study was performed in patients with PMTs and

undergoing surgical resection or biopsy in National Cheng Kung University

Hospital, Tainan, Taiwan, E-Da Hospital, Kaohsiung, Taiwan, and Kaohsiung

Veterans General Hospital, Kaohsiung, Taiwan between January 2010 and

December 2019. Clinical data including age, sex, myasthenia gravis (MG)

symptoms and pathologic diagnosis were collected. The datasets were divided

into UECT (unenhanced computed tomography) and CECT (enhanced computed

tomography) for analysis and modelling. Radiomics model and 3D CNN model

were used to differentiate TETs fromnon-TET PMTs (including cyst, malignant germ

cell tumor, lymphoma and teratoma). The macro F1-score and receiver operating

characteristic (ROC) analysis were performed to evaluate the prediction models.
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Result: In the UECT dataset, there were 297 patients with TETs and 79 patients

with other PMTs. The performance of radiomic analysis with machine learning

model using LightGBM with Extra Tree (macro F1-Score = 83.95%, ROC-AUC =

0.9117) had better performance than the 3D CNN model (macro F1-score =

75.54%, ROC-AUC = 0.9015). In the CECT dataset, there were 296 patients with

TETs and 77 patients with other PMTs. The performance of radiomic analysis with

machine learning model using LightGBM with Extra Tree (macro F1-Score =

85.65%, ROC-AUC = 0.9464) had better performance than the 3D CNN model

(macro F1-score = 81.01%, ROC-AUC = 0.9275).

Conclusion: Our study revealed that the individualized prediction model

integrating clinical information and radiomic features using machine learning

demonstrated better predictive performance in the differentiation of TETs from

other PMTs at chest CT scan than 3D CNN model.
KEYWORDS

radiomics, convolutional neural networks, deep learning, machine learning, prevascular
mediastinal tumor
Introduction

Prevascular mediastinal tumor (PMT) is relatively uncommon,

making up less than 1% of all solid tumors (1). PMT consists of a

wide variety of entities, including thymic epithelial tumor (TET),

lymphoma, germ cell tumor, ectopic thyroid, and cyst, among

which TET is the most frequently encountered (2). The NCCN

guidelines suggested that patients with clinically resectable TETs

undergo upfront surgical resection instead of preoperative

transpleural biopsy to avoid converting stage I thymoma to stage

IV thymoma by spreading tumor within the pleural space (3). Chest

computed tomography (CT) scan is the standard assessment for

PMT. It was reported that the accuracy rate of PMT interpretation

via traditional radiographic features on CT scan reaches as high as

61% in experienced radiologists, leaving much room for

improvements in the era of advanced technology (4).

The applications of radiomics in diagnostic medicine and

outcome analysis have been increasingly proposed lately (5, 6). By

combining image-filtering and feature-extraction methods, it is

possible to extract a large number of high-order radiomic features

from CT images (5). Studies have shown significant radiomic

parameters such as skewness, kurtosis, and entropy, correlated

with thymic tumor histology (7, 8). Redundancy is often the

scenario in highly dimensional data, and classification model

could be developed only through proper feature selection and

proper machine learning (9).

Convolutional neural networks (CNNs) are a class of deep

learning (DL) models that combine imaging filters with artificial

neural networks through a series of successive linear and nonlinear

layers (10, 11). CNN is far more data hungry because of its millions

of learnable parameters to estimate, and therefore is more
02
computationally expensive, resulting in the requirement of

graphical processing units (GPUs) for model training. The major

drawback in the application of 3D deep learning on medical images

is its dependency on data availability and high computational cost

(12). With powerful GPUs becoming increasingly available, we have

seen exponential growth in the applications of 3D deep learning in

different medical image modalities (11).

Nonetheless, with the low incidence of tumor occurrence and

the resultant limited radiographic data and information, it is yet to

be clarified if 3D CNN out-performs radiomics with ML in

differentiating various kinds of mediastinal tumor. Our study

aimed to compare the model using radiomics with traditional

machine learning with 3D CNN model in differentiating TETs

from PMTs, thus providing a prediction tool and the opportunity of

improvement on the decisions for invasive diagnostic or

treatment modalities.
Materials and methods

Study population

A retrospective study was performed in patients with PMTs and

undergoing surgical resection or biopsy in National Cheng-Kung

University Hospital, Tainan, Taiwan, E-Da Hospital, Kaohsiung,

Taiwan, and Kaohsiung Veterans General Hospital, Kaohsiung,

Taiwan between January 2010 and December 2019. Informed

consent was waived because the study was retrospective, and it

was respectively approved by the Institutional Review Board of

National Cheng Kung University Hospital (A-ER-111-211), E-Da

Hospital (EMRP-110-145), and Kaohsiung Veteran General
frontiersin.org
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Hospital (VGHKS19-CT6-08). Exclusion criteria were patients

younger than 20-year-old, missing imaging data, or metastatic

prevascular mediastinal tumors. The patients younger than 20-

year-old were excluded because the most common types of tumors

in this age group are lymphomas and malignant germ cell tumors,

and the rare occurrence of thymic epithelial tumors (TET) does not

have much impact on histological classification of tumors (13).

Clinical data including age, sex, myasthenia gravis (MG) symptoms

and pathologic diagnosis were collected. We divided our dataset

into UECT (unenhanced computed tomography) and CECT

(enhanced computed tomography) for analysis and modelling.

Radiomic model and 3D CNN model were adopted respectively

to differentiate TETs from non-TET PMTs (including cyst,

malignant germ cell tumor, lymphoma and teratoma). The

flowchart of patient inclusion was shown in Figure 1.
Image acquisition

All CT images were obtained using Siemens SOMATOM

Definition Flash, Siemens SOMATOM Definition AS, Siemens

SOMATOM Sensation 16, GE Optima CT660, GE Revolution

CT, GE Bright Speed Elite, GE light speed VCT, and TOSHIBA

CT64-TSX-01A64. The CT protocols were as follows: 120 kVp; tube

current, 150–200 mAs with automatic tube current modulation.

The section thickness ranged between 0.7 mm and 1.5 mm, and the

image size was 512 × 512 pixels. The detailed protocol and contrast

materials are summarized in Table E1. Three patients received

solely non-enhanced CT scan due to renal function impairment,

while the other patients received both non-enhanced and enhanced

CT scan. Contrast enhanced images were obtained after intravenous

administration of contrast medium (injection dose 60-120 mL at a

rate of 1.5-3 ml/s) followed by a 20 ml saline flush. Contrast

enhanced images were obtained 90s after contrast agent

administration. All images were reconstructed into 5-mm sections.
Frontiers in Oncology 03
Tumor segmentation and
image preprocessing

CT images were imported into the open-source software 3D

Slicer 4.10.2 and the tumors were then contoured manually by one

of two observers (C.Y.L. a radiologist with 9 years of experience and

C.C.C, a thoracic surgeon with 9 years of experience) blinded to

patient diagnosis using the built-in paint tool (14). The delineation

of tumor at UECT and CECT was performed in the mediastinal

setting (window level, 50 HU; window width, 350 HU) on the axial

CT plane. Consensus was reached by discussion if the interobserver

variability was apparent. For normalization, all CT voxels were

resampled to 1 mm3 using a cubic interpolation.
Radiomics feature extraction, selection and
model building

The global framework showing the radiomic analysis process is

shown in Figure 2. The whole PMTs in each CT examination served

as VOIs, from which 3D radiomic features were extracted using the

open-source platform PyRadiomics (15). A total of 851 radiomic

features, including 14 shape features, 18 intensity histogram

features, 74 texture features, and 745 wavelet features were

extracted for further analysis.

A multivariate logistic regression model was developed using

the least absolute shrinkage and selection operator (LASSO) with L1

penalty to filter the features to reduce the redundancy of the

features. The features with non-zero coefficients at optimized

hyperparameter lambda were selected and used in ML. Relevant

clinical information including age, sex and MG symptoms were also

input as feature vectors in ML.

In combination with feature-selection method, eight ML

classifiers were used to differentiate thymoma from other PMTs:

KNeighbors, random forest (RF), extreme gradient boosting
FIGURE 1

Flowchart of patients inclusion. NCKUH, National Cheng Kung University Hospital; KVGH, Kaohsiung Veteran General Hospital.
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(XGBoost), Light Gradient Boosting Machine (LightGBM),

CatBoost , Extra Tree , and Weight Ensemble Model

(WeightEnsemble_L2). A Bayesian optimization algorithm (BOA)

was applied to optimize the hyperparameters of these models. The

flowchart of the proposed scheme was illustrated in Figure 2.
3D convolutional neural networks model

A fully convolutional neural network (CNN), as described in a

recently published previous work was used (16). ROI patches were

extracted from each CT image by defining a bounding box that

enclosed each previously defined ROI. All patches were resized to

128 × 128 × 64. Owing to the limited training data, we applied

random rotation (-30°~30°) for training data augmentation. As

radiomics-based machine learning model, the clinical information

including age, sex and MG symptoms were also input as feature

vectors in this neural network model.

All the models are implemented in Python 3.8.9 based on

tensorflow 2.8.0 and trained on 1 Tesla V100-DGXS-32GB. The

loss function during training was the binary cross-entropy metric

and was optimized using an Adam optimizer with a batch size of 2,

and an initial learning rate of 10-5. Early stopping was employed to

prevent overfitting, and training was stopped once model

performance stops improving on a validation dataset after 350

constitutive training epochs (maximum epoch value = 1000). The

best model observed during training would be the output model.

The flowchart of the proposed scheme was illustrated in Figure 2.
Frontiers in Oncology 04
Statistical analyses

Continuous variables were compared using the Student t-test,

and categorical variables were compared using the chi-square test. P

values of < 0.05 were considered statistically significant.

Clinical information (age, sex and presence of MG symptom)

was added into radiomic model and 3D CNN model. Each dataset

was randomly split into training, validation and testing sets in the

ratio of 60:15:25. The models were evaluated through repeated

random sub-sampling validation.

The accuracy, macro precision, macro recall, and macro F1-

score for each dataset were calculated and determined to verify the

performance of the different models. The macro F1-score reflected

the effectiveness on small classes and is an effective evaluation

metric for an imbalanced dataset. Receiver operating characteristic

(ROC) analysis was performed, and the area under the curve (AUC)

was used to evaluate the prediction models. The analysis was

performed using python 3.8.9 with scikit-learn 1.0.1, autogluon

0.2.0, and statsmodels 0.13.1.

Result

Basic clinical characteristics

The clinicopathological characteristics of patients in our study

are shown in Table 1. In UECT dataset, there were 297 patients with

TETs and 79 patients with other PMTs. In CECT dataset, there were

296 patients with TETs and 77 patients with other PMTs. There was
FIGURE 2

Flowchart of the proposed scheme. PMT, prevascular tumor; LASSO, least absolute shrinkage and selection operator; MG, myasthenia gravis; RF,
random forest; XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine.
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significant difference in age and MG symptoms in UECT dataset

[TETs vs. other PMTs: 61.70 ± 12.99 vs. 51.19 ± 17.74, p < 0.001; 87

(29.3%) vs. 4 (5.1%), p < 0.001]. In TETs, there were 19.2% thymic

carcinoma and 80.8% thymomas. In other PMTs, there were mostly

cyst (54.4%). In CECT dataset, there was significant difference in

age and MG symptoms [TETs vs. other PMTs: 61.46 ± 13.06 vs.

49.26 ± 17.76, p < 0.001; 87 (29.4%) vs 4 (5.2%), p < 0.001]. In TETs,

there were 19.3% thymic carcinoma and 80.7% thymomas. In other

PMTs, there were mostly cyst (53.2%).
Radiomics feature selection and optimal
signature construction

After performing tumor segmentation in the included patients,

851 radiomics features were extracted (Supplementary Tables 1, 2).

The top five feature selection using LASSO logistic regression with

different values of lambda was shown in Tables 2, 3, and the top 20

feature selection was showed in Supplementary Tables 3, 4.

The result of best feature selection using various machine

learning methods was demonstrated in Table 4. In UECT dataset,

LightGBM with Extra Tree using features in selection_5 had best

performance (macro F1-Score = 83.95%, accuracy = 89.99%). The

ROC curve was shown in Figure 3 with AUC = 0.9117. In CECT

dataset, LightGBMwith Extra Tree using features in selection_4 had

best performance (Macro F1-Score = 85.65%、accuracy = 91.15%).

The ROC curve was shown in Figure 3 with AUC = 0.9464. The

results of Bayesian optimization of different models and various

feature selection in UECT and CECT were showed in

Supplementary Tables 5, 6.
3D CNN analysis

The result of 3D CNN classification was shown in Table 4. In

UECT dataset, macro F1-score was 75.54%, accuracy 84.16%. The
Frontiers in Oncology 05
ROC curve was shown in Figure 3 with AUC = 0.9015. In CECT

dataset, macro F1-score was 81.01%, accuracy 86.73%. The ROC

curve was shown in Figure 3 with AUC = 0.9275. Because we used

repeated random sub-sampling validation method for 10 times, the

total training time was 14.5 hours in UECT dataset and 14.1 hours

in CECT dataset.

In comparison, the performance of radiomic analysis with

machine learning model using LightGBM with Extra Tree had

better performance than the 3D CNN model in both UECT and

CECT dataset. Four cases were illustrated to differentiate thymic

epithelial tumors from other prevascular mediastinal tumors with

our ML and 3D CNN classification models in the Figure 4.
Discussion

Our result showed radiomics with ensemble machine learning

achieved better performance than 3D CNN in differentiating TETs

from other PMTs. Deep learning (DL) model presented more stable

shape than radiomics with ML model on ROC curve. Radiomics

with ML and DL are active research in the field of oncology (17).

Some studies showed that the DL model had better performance

than the ML-based radiomics (18–20), some showed ML-based

radiomics out-performed DL model (21), and some demonstrated

DL-based radiomics model had the best performance (22, 23). Prior

studies had performed radiomics based ML or DL to classify

thymoma form other PMT (24–26). However, our study was the

first to compare the performance of radiomics-based ML with DL

using the same dataset to differentiated thymoma form other PMT.

While it is well-known that with large datasets, the performance of

DL model was superior to hand-crafted feature extraction, a large

dataset is not always available in medicine and may be limited by

factors such as disease incidence, prevalence, and obstacles in data

procurement. For small dataset, studies have suggested feature

engineering may be a more suitable machine learning strategy

with notable advantages of radiomics for medical imaging
TABLE 1 Baseline characteristics of patients included for analysis.

Variables
UECT CECT

TET (n=297) Others (n=79) p value TET (n=296) Others (n=77) p value

Sex (male) 135 (45.5%) 36 (45.6%) 1 134 (45.3%) 36 (46.8%) 0.898

Age (y)* 61.70 ± 12.99 51.19 ± 17.74 <0.001 61.46 ± 13.06 49.26 ± 17.76 <0.001

Myasthenia gravis 87 (29.3%) 4 (5.1%) <0.001 87 (29.4%) 4 (5.2%) <0.001

Pathology

Thymoma 240 (80.8%) 239 (80.7%)

Thymic carcinoma 57 (19.2%) 57 (19.3%)

Cyst 43 (54.4%) 41 (53.2%)

Malignant germ cell tumor 10 (12.7%) 10 (13.0%)

Lymphoma 11 (13.9%) 11 (14.3%)

Teratoma 15 (19.0%) (19.5%)
Except where indicated, data are numbers of patients, with percentages in parentheses.
* Data are means ± SDs.
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TABLE 2 Top five variable feature selection performed by LASSO Logistic Regression at various lambda value using UECT.
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avelet-HHH_glszm_SizeZoneNonUniformityNormalized wavelet-HHH_glszm_SmallAreaEmphasis

avelet-LLL_glcm_MaximumProbability

erformed by Lasso Logistic Regression at various lambda value using CECT.

Selected Variable

avelet-LHH_firstorder_Mean wavelet-LHH_glcm_SumEntropy

avelet-LHH_ngtdm_Busyness wavelet-HLH_glszm_SizeZoneNonUniformityNo

avelet-LLL_firstorder_Median

avelet-LHL_firstorder_Mean wavelet-LHH_firstorder_Mean

avelet-LHH_glrlm_RunLengthNonUniformityNormalized wavelet-LHH_glrlm_RunPercentage

avelet-HLL_glszm_LargeAreaHighGrayLevelEmphasis wavelet-HLH_glszm_SizeZoneNonUniformityNo

avelet-HHL_glcm_Imc1 wavelet-HHL_glcm_InverseVariance

avelet-LHL_firstorder_Mean wavelet-LHL_firstorder_Skewness

avelet-LHH_glcm_JointEnergy wavelet-LHH_glcm_SumEntropy

avelet-LHH_glszm_SizeZoneNonUniformityNormalized wavelet-LHH_ngtdm_Busyness

avelet-HLL_glszm_LargeAreaHighGrayLevelEmphasis wavelet-HLH_glszm_SizeZoneNonUniformityNo

avelet-HHL_glcm_Imc1 wavelet-HHL_glcm_InverseVariance

avelet-LLL_firstorder_Median

avelet-LLH_glszm_GrayLevelVariance wavelet-LLH_glszm_LowGrayLevelZoneEmphasis

avelet-LHL_firstorder_Skewness wavelet-LHL_glcm_InverseVariance

avelet-LHH_glcm_Imc2 wavelet-LHH_glcm_JointEnergy

avelet-LHH_glrlm_RunLengthNonUniformityNormalized wavelet-LHH_glrlm_RunPercentage
h

r

r

r

r
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TABLE 3 Continued

Selected Variable

wavelet-HLL_firstorder_90Percentile wavelet-HLL_glcm_Correlation

mityNormalized wavelet-HLH_ngtdm_Busyness wavelet-HHL_glcm_Imc1

wavelet-HHL_glcm_MCC wavelet-HHL_glszm_LargeAreaHighGrayLevelEmphasis

evelEmphasis wavelet-LLL_firstorder_Median

wavelet-LLH_glszm_GrayLevelVariance wavelet-LLH_glszm_LowGrayLevelZoneEmphasis

wavelet-LHL_firstorder_Mean wavelet-LHL_firstorder_Median

wavelet-LHL_glcm_InverseVariance wavelet-LHH_firstorder_Mean

wavelet-LHH_glcm_JointEnergy wavelet-LHH_glcm_SumEntropy

rmityNormalized wavelet-LHH_glrlm_RunPercentage wavelet-LHH_glszm_SizeZoneNonUniformityNormalized

wavelet-HLL_firstorder_90Percentile wavelet-HLL_glcm_Correlation

wavelet-HLH_glrlm_LongRunLowGrayLevelEmphasis wavelet-HLH_glszm_GrayLevelNonUniformityNormalized

mityNormalized wavelet-HLH_ngtdm_Busyness wavelet-HHL_glcm_Imc1

wavelet-HHL_glcm_MCC wavelet-HHL_glcm_MaximumProbability

LevelEmphasis wavelet-HHL_glszm_SmallAreaLowGrayLevelEmphasis wavelet-HHH_firstorder_Median
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Feature Selection Lambda

wavelet-LHH_ngtdm_Busyness

wavelet-HLH_glszm_SizeZoneNonUnifor

wavelet-HHL_glcm_InverseVariance

wavelet-HHL_glszm_SmallAreaLowGrayL

Selection 5 0.01322

original_shape_Sphericity

wavelet-LHL_firstorder_Maximum

wavelet-LHL_firstorder_Skewness

wavelet-LHH_glcm_Imc2

wavelet-LHH_glrlm_RunLengthNonUnifo

wavelet-LHH_ngtdm_Busyness

wavelet-HLH_glcm_MCC

wavelet-HLH_glszm_SizeZoneNonUnifor

wavelet-HHL_glcm_InverseVariance

wavelet-HHL_glszm_LargeAreaHighGray

wavelet-LLL_firstorder_Median
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analysis. At present, studies that directly compare radiomics and

deep learning clinical model performance are relatively unexplored.

In this study, we address these questions and further aim to enhance

interpretability of such machine learning models (27).

There are a large number of vectors and associated

computational cost in DL. We used 3D CNN in our study, which

was relatively simple; however, the trainable parameters were up to

1,351,873. Because of the long training time, it would be of more

difficulty for researchers to modify the algorithm repeatedly. In

comparison, radiomics with ML had lower computational cost but

was associated with more complicated process. After radiomic

feature extraction, most feature vectors are redundant. Therefore,

feature selection is demanded to build a model viaML. The method
Frontiers in Oncology 09
of ML has substantial impact on its performance. In our study, not

all radiomics with ML method out-performed 3D CNN. In

consistent with prior study, ensemble learning had the best result.

Ensemble learning can also be applied in DL, with the cost of longer

training time.

Our results revealed that dataset of CECT worked better than

UECT in classifying thymoma from other PMTs using both

radiomics models and 3D CNN model, which was consistent with

our clinical experience. The imaging characters at chest CT scan of

low-risk thymoma and thymic cyst showed round or oval shape,

smooth contour, while high-risk thymoma showed irregular shape

and contour. Nonseminomatous germ cell tumor demonstrated

marked hemorrhagic necrosis, while teratoma revealed fat
TABLE 4 The best result of radiomics models and 3D CNN model to differentiate thymoma from other prevascular mediastinal tumors.

Feature selection Macro F1-Score Macro Precision Macro Recall Accuracy

UECT

CatBoost Selection 4 0.8121 0.8686 0.7813 0.8882

ExtraTrees with Entropy Selection 1 0.7921 0.8519 0.7606 0.8786

ExtraTrees with Gini Selection 1 0.7985 0.8595 0.7663 0.8818

Kneighbors with Distance weights All feature 0.6128 0.6599 0.6015 0.7861

Kneighbors with Uniform weights All feature 0.6135 0.6623 0.6015 0.7861

LightGBM Selection 1 0.8258 0.8586 0.8052 0.8914

LightGBM with Extra Trees Selection 5 0.8395 0.8773 0.816 0.8999

NeuralNetFastAI Selection 9 0.833 0.835 0.8376 0.8851

Random Forest with Entropy Selection 8 0.7952 0.8569 0.7631 0.8797

Random Forest with Gini Selection 4 0.7984 0.8567 0.7685 0.8797

WeightedEnsemble_L2 Selection 9 0.8328 0.8605 0.8145 0.8946

XGBoost Selection 1 0.8061 0.8305 0.7891 0.8775

3D CNN 0.7554 0.7679 0.7531 0.8416

CECT

CatBoost Selection 4 0.8374 0.8824 0.8111 0.9027

ExtraTrees with Entropy Selection 1 0.796 0.8747 0.7595 0.8856

ExtraTrees with Gini Selection 1 0.7981 0.8781 0.7602 0.8867

Kneighbors with Distance weights All feature 0.6344 0.7036 0.6189 0.8059

Kneighbors with Uniform weights All feature 0.6257 0.6865 0.6129 0.7985

LightGBM Selection 2 0.8533 0.8806 0.836 0.9081

LightGBM with Extra Trees Selection 4 0.8565 0.8889 0.8353 0.9115

NeuralNetFastAI Selection 7 0.8388 0.8351 0.8564 0.8854

Random Forest with Entropy Selection 3 0.8328 0.8932 0.8017 0.9039

Random Forest with Gini Selection 3 0.8344 0.8892 0.8029 0.9027

WeightedEnsemble_L2 Selection 5 0.8506 0.8763 0.8341 0.9072

XGBoost Selection 3 0.8496 0.8601 0.8432 0.9029

3D CNN 　 0.8101 0.8178 0.8082 0.8673
fr
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component (2). From the result of LASSO selection in UECT and

CECT, sphericity in shape feature played an important role in two

dataset model, consistent with the finding in our conventional CT

scan. High resolution medical imaging contains many features that

is difficult to discover by visual inspection. The ability of multi-scale

and multiresolution in wavelet transform has been verified in many

imaging studies, and often applied to image compression, edge

detection, feature extraction, and texture analysis. Our study

demonstrated that wavelet-based features were selected by two

datasets, suggesting the importance of high order features in

imaging identification. However, other shape features and original

first order features are more important in classification in the UECT

dataset than in the CECT dataset. Compared with CECT, UECT

lacks contrast agent to demonstrate richer texture features of soft

tissue, and the septa within the tumor or the range of necrosis are

less clearly seen. This could be responsible for the reason that UECT

had a different tendency of feature selection from CECT dataset.

In differentiating TET from cysts, radiologists primarily focus

on the Hounsfield units (HU) changes between non-enhanced and

contrast-enhanced scans. Previous studies have found that cysts

have a mean attenuation value of around 23 HU and a maximal

attenuation value of 58 HU (28). However, some thymic cysts may

have increased CT attenuation if hemorrhage or infection occurs,

and relying solely on non-enhanced scans may lead to misdiagnosis.

According to our research approach, we have developed separate

models for predicting TET from non-enhanced and contrast-

enhanced CT scans. Interestingly, although contrast-enhanced CT

has better predictive performance, using non-enhanced CT alone,

whether based on radiomic-based machine learning or 3D
Frontiers in Oncology 10
convolutional neural network, achieves an AUC of > 0.9, which is

close to the performance of the contrast-enhanced CT group. The

difference of macro F1-score in all ML methods and 3D CNN in

both UECT and CECT datasets was less than five percent. Tumor

segmentation in UECT is sometimes difficult due to its proximity to

adjacent vessel, heart, pericardial effusion, or consolidated lung.

However, radiomics-based ML achieved an accuracy of 90%,

indicating that our model had good performance using UECT. As

the LDCT for lung cancer screening become more prevalent, there

is increasing number of incidentally found asymptomatic PMTs.

Once the UECT dataset provides high accuracy in differentiating

PMTs, patients do not need to undergo CECT, and radiation dose

and contrast agent exposure with the likelihood of kidney injury

could therefore be minimized. Besides, previous literature has

reported that approximately 22% to 68% of non-therapeutic

thymectomies were unnecessary (28). In our dataset, 14% (53/

376) of the patients had cysts or lymphoma and could have been

otherwise managed instead of being operated on. Our model

achieved an accuracy of 0.91. Therefore, we believe that

increasing the accuracy of preoperative imaging diagnosis will

help to reduce unnecessary invasive procedures.

Our study had several limitations. First, tumors were manually

segmented; this could be user-dependent, time-consuming and labor-

intensive. Prior studies have demonstrated DL-based tumor

segmentation algorithm with robust performance. Automated tumor

segmentation could probably be integrated into an automated

processing pipeline to minimize subjectivity and facilitate large-scale

studies. Second, after radiomics feature extraction, we used only

LASSO regression with variable lambda value for feature selection.
FIGURE 3

Receiver operating characteristic (ROC) curves showed the performance of LightGBM with Extra Tree and 3D CNN on UECT and CECT. AUC, area
under curve.
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Adopting different feature selection methods could result in different

outcome. Third, we used a relatively simple 3D CNN model for

classification. Although complicated model is computationally

expensive, future advancement in hardware (e.g., GPU or cloud

computing) and algorithmic development is expectable. Fourth,

because of the retrospective nature of this analysis, a selection bias

was unavoidable. Lastly, CT images in our study were obtained using

heterogeneous CT scanners, with various acquisition parameters,

which can affect radiomic features and analysis. Nonetheless, the

diagnostic performance of the radiomics model remained high in the

validation cohort, which verified the good generalizability of

the model.

As DL gradually becomes the mainstream of imaging study, some

studies showed DL was superior to radiomics with ML in visual

classification. However, it is susceptible to overfitting and takes a large

number of data for model training and parameter tuning. Owing to

the limited size of dataset, our proposed radiomics-based ML and 3D

CNN scheme may be overfitting during training process. In rare

disease with limited case number, radiomics-based ML may have

better efficacy with lower computational cost. The best method of

computing depends on the subject of study and size of dataset.

Further studies are mandatory to evaluate the efficacy of ML and DL

in the same dataset.
Frontiers in Oncology 11
Conclusion

To conclude, an ensemble ML method with radiomic feature

can be useful for differentiating TETs from other type of PMTs,

performed slightly better than a 3D CNN, and demonstrated good

generalizability across institutions.
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FIGURE 4

Demonstration of the application of ML and 3D CNN classification models to analyze four distinct cases with varying pathologies. A case is classified
as TET if the confidence score obtained from a ML model and 3D CNN using their UECT and CECT, respectively, is greater than 0.50, and classified
as non-TET if it is less than or equal to 0.50. Yellow text indicates correct predictions, while blue text indicates incorrect predictions. (A) A 61 years
old male with thymoma. Both LightGBM with Extra Tree and 3D CNN had correct prediction from UECT and CECT. (B) A 54 years old female with
lymphoma. The LightGBM with ExtraTree had correct prediction from CECT. (C) A 50 years old male with malignant germ cell tumor. The LightGBM
with Extra Tree had correct prediction from both UECT and CECT, while 3D CNN had correct prediction from UECT. (D) A 78 years old female with
thymic cyst. The LightGBM with Extra Tree had correct prediction from both UECT and CECT, while 3D CNN had correct prediction from CECT.
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