396 research outputs found
Quasi-classical Lie algebras and their contractions
After classifying indecomposable quasi-classical Lie algebras in low
dimension, and showing the existence of non-reductive stable quasi-classical
Lie algebras, we focus on the problem of obtaining sufficient conditions for a
quasi-classical Lie algebras to be the contraction of another quasi-classical
algebra. It is illustrated how this allows to recover the Yang-Mills equations
of a contraction by a limiting process, and how the contractions of an algebra
may generate a parameterized families of Lagrangians for pairwise
non-isomorphic Lie algebras.Comment: 17 pages, 2 Table
Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells
Human bone marrow stromal cells (BMSC) are key elements of the
hematopoietic environment and they play a central role in bone
and bone marrow physiology. However, how key stromal cell
functions are regulated is largely unknown. We analyzed the role of the
immediate early response transcription factor EGR1 as key stromal cell
regulator and found that EGR1 was highly expressed in prospectivelyisolated primary BMSC, down-regulated upon culture, and low in noncolony-forming CD45neg stromal cells. Furthermore, EGR1 expression
was lower in proliferative regenerating adult and fetal primary cells compared to adult steady-state BMSC. Overexpression of EGR1 in stromal
cells induced potent hematopoietic stroma support as indicated by an
increased production of transplantable CD34+
CD90+ hematopoietic stem
cells in expansion co-cultures. The improvement in bone marrow stroma
support function was mediated by increased expression of hematopoietic supporting genes, such as VCAM1 and CCL28. Furthermore, EGR1
overexpression markedly decreased stromal cell proliferation whereas
EGR1 knoc
Magnetic Reconnection in Extreme Astrophysical Environments
Magnetic reconnection is a basic plasma process of dramatic rearrangement of
magnetic topology, often leading to a violent release of magnetic energy. It is
important in magnetic fusion and in space and solar physics --- areas that have
so far provided the context for most of reconnection research. Importantly,
these environments consist just of electrons and ions and the dissipated energy
always stays with the plasma. In contrast, in this paper I introduce a new
direction of research, motivated by several important problems in high-energy
astrophysics --- reconnection in high energy density (HED) radiative plasmas,
where radiation pressure and radiative cooling become dominant factors in the
pressure and energy balance. I identify the key processes distinguishing HED
reconnection: special-relativistic effects; radiative effects (radiative
cooling, radiation pressure, and Compton resistivity); and, at the most extreme
end, QED effects, including pair creation. I then discuss the main
astrophysical applications --- situations with magnetar-strength fields
(exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares
and magnetically-powered central engines and jets of GRBs. Here, magnetic
energy density is so high that its dissipation heats the plasma to MeV
temperatures. Electron-positron pairs are then copiously produced, making the
reconnection layer highly collisional and dressing it in a thick pair coat that
traps radiation. The pressure is dominated by radiation and pairs. Yet,
radiation diffusion across the layer may be faster than the global Alfv\'en
transit time; then, radiative cooling governs the thermodynamics and
reconnection becomes a radiative transfer problem, greatly affected by the
ultra-strong magnetic field. This overall picture is very different from our
traditional picture of reconnection and thus represents a new frontier in
reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic
reconnection). Article is based on an invited review talk at the
Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA;
February 8-12, 2010). 30 pages, no figure
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
A review of diagnostic and functional imaging in headache
The neuroimaging of
headache patients has revolutionised
our understanding of the pathophysiology
of primary headaches and provided
unique insights into these syndromes.
Modern imaging studies
point, together with the clinical picture,
towards a central triggering
cause. The early functional imaging
work using positron emission
tomography shed light on the genesis
of some syndromes, and has
recently been refined, implying that
the observed activation in migraine
(brainstem) and in several trigeminal-autonomic headaches (hypothalamic
grey) is involved in the pain
process in either a permissive or
triggering manner rather than simply
as a response to first-division nociception
per se. Using the advanced
method of voxel-based morphometry,
it has been suggested that there
is a correlation between the brain
area activated specifically in acute
cluster headache — the posterior
hypothalamic grey matter — and an
increase in grey matter in the same
region. No structural changes have
been found for migraine and medication
overuse headache, whereas
patients with chronic tension-type
headache demonstrated a significant
grey matter decrease in regions
known to be involved in pain processing.
Modern neuroimaging thus
clearly suggests that most primary
headache syndromes are predominantly
driven from the brain, activating
the trigeminovascular reflex and
needing therapeutics that act on both
sides: centrally and peripherally
Linear Collider Physics Resource Book for Snowmass 2001, 3: Studies of Exotic and Standard Model Physics
This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector
A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
- …