337 research outputs found

    Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable Λ\Lambda

    Full text link
    The behavior of magnetic field in plane symmetric inhomogeneous cosmological models for bulk viscous distribution is investigated. The coefficient of bulk viscosity is assumed to be a power function of mass density (ξ=ξ0ρn)(\xi =\xi_{0}\rho^{n}). The values of cosmological constant for these models are found to be small and positive which are supported by the results from recent supernovae Ia observations. Some physical and geometric aspects of the models are also discussed.Comment: 18 pages, LaTex, no figur

    Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    Get PDF
    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV using an integrated luminosity of 120 pb-1. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.

    The Impact of |Delta I|=5/2 Transitions in K-> pi pi Decays

    Full text link
    We consider the impact of isospin violation on the analysis of K-> pi pi decays. We scrutinize, in particular, the phenomenological role played by the additional weak amplitude, of |Delta I|=5/2 in character, incurred by the presence of isospin violation. We show that Watson's theorem is appropriate in O(m_d-m_u), so that the inferred pi-pi phase shift at sqrt{s}=m_K determines the strong phase difference between the I=0 and I=2 amplitudes in K-> pi pi decay. We find the magnitude of the |Delta I|=5/2 amplitude thus implied by the empirical branching ratios to be larger than expected from estimates of isospin-violating strong and electromagnetic effects. We effect a new determination of the octet and 27-plet coupling constants with strong-interaction isospin violation and with electromagnetic effects, as computed by Cirigliano, Donoghue, and Golowich, and find that we are unable to resolve the difficulty. Exploring the role of |Delta I|=5/2 transitions in the CP-violating observable epsilon'/epsilon, we determine that the presence of a |Delta I|=5/2 amplitude impacts the empirical determination of omega, the ratio of the real parts of the |Delta I|=3/2 to |Delta I|=1/2 amplitudes, and that it generates a decrease in the estimation of epsilon'/epsilon.Comment: 29 pages, 1 ps fig, refs. added, to appear in Phys. Rev.

    A New Prediction for Direct CP Violation \epsilon'/\epsilon and \Delta I = 1/2 Rule

    Full text link
    The low energy dynamics of QCD is investigated with special attention paid to the matching between QCD and chiral perturbation theory(ChPT), and also to some useful algebraic chiral operator relations which survive even when we include chiral loop corrections. It then allows us to evaluate the hadronic matrix elements below the energy scale Λχ1\Lambda_{\chi} \simeq 1 GeV. Based on the new analyzes, we present a consistent prediction for both direct CP-violating parameter ϵ/ϵ\epsilon'/\epsilon and ΔI=1/2\Delta I =1/2 rule in the kaon decays. In the leading 1/Nc1/N_c approximation, the isospin amplitudes A0A_0 and A2A_2 are found to agree well with the data, and the direct CP-violating parameter ϵ/ϵ\epsilon'/\epsilon is predicted to be large, which also confirms our early conclusion. Its numerical value is ϵ/ϵ=23.67.8+12.4×104(Imλt/1.2×104)\epsilon'/\epsilon = 23.6^{+12.4}_{-7.8}\times 10^{-4}(Im\lambda_t/1.2\times 10^{-4}) which is no longer sensitive to the strange quark mass due to the matching conditions. Taking into account a simultaneous consistent analysis on the isospin amplitudes A0A_0 and A2A_2, the ratio ϵ/ϵ\epsilon'/\epsilon is in favor of the values ϵ/ϵ=(20±9)×104\epsilon'/\epsilon = (20\pm 9)\times 10^{-4}.Comment: 19 pages, ReVtex, no figures, the corrected version to be published in Phys. Rev. D . A more favorable and consistent prediction for direct CP violation is found: epsilon'(prime) /epsilon = (20 \pm 9) x 10^-4, here the contributions from finite meson masses and new isospin symmetry breaking effects have been included. The uncertainties from QCD (or low energy) scale have been considered. More references are adde

    Measurement of dijet photoproduction for events with a leading neutron at HERA

    Get PDF
    Differential cross sections for dijet photoproduction and this process in association with a leading neutron, e+ + p -> e+ + jet + jet + X (+ n), have been measured with the ZEUS detector at HERA using an integrated luminosity of 40 pb-1. The fraction of dijet events with a leading neutron was studied as a function of different jet and event variables. Single- and double-differential cross sections are presented as a function of the longitudinal fraction of the proton momentum carried by the leading neutron, xL, and of its transverse momentum squared, pT^2. The dijet data are compared to inclusive DIS and photoproduction results; they are all consistent with a simple pion-exchange model. The neutron yield as a function of xL was found to depend only on the fraction of the proton beam energy going into the forward region, independent of the hard process. No firm conclusion can be drawn on the presence of rescattering effects.Comment: 40 pages, 18 figure

    Deep inelastic inclusive and diffractive scattering at Q2Q^2 values from 25 to 320 GeV2^2 with the ZEUS forward plug calorimeter

    Get PDF
    Deep inelastic scattering and its diffractive component, epeγpeXNep \to e^{\prime}\gamma^* p \to e^{\prime}XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb1^{-1}. The MXM_X method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy WW (37 -- 245 GeV), photon virtuality Q2Q^2 (20 -- 450 GeV2^2) and mass MXM_X (0.28 -- 35 GeV) is covered. The diffractive cross section for 2<MX<152 < M_X < 15 GeV rises strongly with WW, the rise becoming steeper as Q2Q^2 increases. The data are also presented in terms of the diffractive structure function, F2D(3)F^{\rm D(3)}_2, of the proton. For fixed Q2Q^2 and fixed MXM_X, \xpom F^{\rm D(3)}_2 shows a strong rise as \xpom \to 0, where \xpom is the fraction of the proton momentum carried by the Pomeron. For Bjorken-x<1103x < 1 \cdot 10^{-3}, \xpom F^{\rm D(3)}_2 shows positive logQ2\log Q^2 scaling violations, while for x5103x \ge 5 \cdot 10^{-3} negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.Comment: 89 pages, 27 figure

    Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore