58 research outputs found
Uptake and movement of phosphorus (32P) in grapes
Phosphorus applied into the soil, appeared in the vine shoots within 24 hours of application, and the 6th bud of the shoot, which is generally the most fruitful region of shoots in the Anab-e-Shahi variety of grape, accumulated a high concentration of fertilizer P
Unconditionally secure digital signatures implemented in an eight-user quantum network
The ability to know and verifiably demonstrate the origins of messages can often be as important as encrypting the message itself. Here we present an experimental demonstration of an unconditionally secure digital signature (USS) protocol implemented for the first time, to the best of our knowledge, on a fully connected quantum network without trusted nodes. We choose a USS protocol which is secure against forging, repudiation and messages are transferrable. We show the feasibility of unconditionally secure signatures using only bi-partite entangled states distributed throughout the network and experimentally evaluate the performance of the protocol in real world scenarios with varying message lengths
Scalable Authentication and Optimal Flooding in a Quantum Network
The global interest in quantum networks stems from the security guaranteed by the laws of physics. The deployment of quantum networks means facing the challenges of scaling up the physical hardware and, more importantly, of scaling up all other network layers and optimally utilizing network resources. Here, we consider two related protocols and their experimental demonstrations on an eight-user quantum network test bed, and discuss their usefulness with the aid of example use cases. First, we consider an authentication-transfer protocol to manage a fundamental limitation of quantum communication—the need for a preshared key between every pair of users linked together on the quantum network. By temporarily trusting some intermediary nodes for a short period of time (<35 min in our network), we can generate and distribute these initial authentication keys with a very high level of security. Second, when end users quantify their trust in intermediary nodes, our flooding protocol can be used to improve both end-to-end communication speeds and increase security against malicious nodes
Experimental implementation of secure anonymous protocols on an eight-user quantum key distribution network
Anonymity in networked communication is vital for many privacy-preserving tasks. Secure key distribution alone is insufficient for high-security communications. Often, knowing who transmits a message to whom and when must also be kept hidden from an adversary. Here, we experimentally demonstrate five information-theoretically secure anonymity protocols on an eight user city-wide quantum network using polarisation entangled photon pairs. At the heart of these protocols is anonymous broadcasting, which is a cryptographic primitive that allows one user to reveal one bit of information while keeping their identity anonymous. For a network of n users, the protocols retain anonymity for the sender, given that no more than n − 2 users are colluding. This is an implementation of genuine multi-user cryptographic protocols beyond standard QKD. Our anonymous protocols enhance the functionality of any fully-connected Quantum Key Distribution network without trusted nodes
Endogenous adenine mediates kidney injury in diabetic models and predicts diabetic kidney disease in patients
Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality; however, few mechanistic biomarkers are available for high-risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from the Chronic Renal Insufficiency Cohort (CRIC) study, the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes (SMART2D), and the American Indian Study determined whether urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in the CRIC study and SMART2D. ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in the CRIC study, SMART2D, and the American Indian study. Empagliflozin lowered UAdCR in nonmacroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology, and single-cell transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mTOR. Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.</p
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Overexpression of Pro-Inflammatory Cytokines in Myelodysplastic Syndrome (MDS-RA)
10.4172/2329-8790.1000231Journal of Hematology & Thromboembolic Diseases040
Intra-Articular Injections of Polyphenols Protect Articular Cartilage from Inflammation-Induced Degradation: Suggesting a Potential Role in Cartilage Therapeutics
<div><p>Arthritic diseases, such as osteoarthritis and rheumatoid arthritis, inflict an enormous health care burden on society. Osteoarthritis, a degenerative joint disease with high prevalence among older people, and rheumatoid arthritis, an autoimmune inflammatory disease, both lead to irreversible structural and functional damage to articular cartilage. The aim of this study was to investigate the effect of polyphenols such as catechin, quercetin, epigallocatechin gallate, and tannic acid, on crosslinking type II collagen and the roles of these agents in managing <i>in vivo</i> articular cartilage degradation. The thermal, enzymatic, and physical stability of bovine articular cartilage explants following polyphenolic treatment were assessed for efficiency. Epigallocatechin gallate and tannic acid-treated explants showed >12 °C increase over native cartilage in thermal stability, thereby confirming cartilage crosslinking. Polyphenol-treated cartilage also showed a significant reduction in the percentage of collagen degradation and the release of glycosaminoglycans against collagenase digestion, indicating the increase physical integrity and resistance of polyphenol crosslinked cartilage to enzymatic digestion. To examine the <i>in vivo</i> cartilage protective effects, polyphenols were injected intra-articularly before (prophylactic) and after (therapeutic) the induction of collagen-induced arthritis in rats. The hind paw volume and histomorphological scoring was done for cartilage damage. The intra-articular injection of epigallocatechin gallate and tannic acid did not significantly influence the time of onset or the intensity of joint inflammation. However, histomorphological scoring of the articular cartilage showed a significant reduction in cartilage degradation in prophylactic- and therapeutic-groups, indicating that intra-articular injections of polyphenols bind to articular cartilage and making it resistant to degradation despite ongoing inflammation. These studies establish the value of intra-articular injections of polyphenol in stabilization of cartilage collagen against degradation and indicate the unique beneficial role of injectable polyphenols in protecting the cartilage in arthritic conditions.</p></div
- …