99 research outputs found
Tooth Position Determination by Automatic Cutting and Marking of Dental Panoramic X-ray Film in Medical Image Processing
This paper presents a novel method for automatic segmentation of dental X-ray images into single tooth sections and for placing every segmented tooth onto a precise corresponding position table. Moreover, the proposed method automatically determines the toothâs position in a panoramic X-ray film. The image-processing step incorporates a variety of image-enhancement techniques, including sharpening, histogram equalization, and flat-field correction. Moreover, image processing was implemented iteratively to achieve higher pixel value contrast between the teeth and cavity. The next image-enhancement step is aimed at detecting the teeth cavity and involves determining the segment and points separating the upper and lower jaw, using the difference in pixel values to cut the image into several equal sections and then connecting each cavity feature point to extend a curve that completes the description of the separated jaw. The curve is shifted up and down to look for the gap between the teeth, to identify and address missing teeth and overlapping. Under FDI World Dental Federation notation, the left and right sides receive eight-code sequences to mark each tooth, which provides improved convenience in clinical use. According to the literature, X-ray film cannot be marked correctly when a tooth is missing. This paper utilizes artificial center positioning and sets the teeth gap feature points to have the same count. Then, the gap feature points are connected as a curve with the curve of the jaw to illustrate the dental segmentation. In addition, we incorporate different image-processing methods to sequentially strengthen the X-ray film. The proposed procedure had an 89.95% accuracy rate for tooth positioning. As for the tooth cutting, where the edge of the cutting box is used to determine the position of each tooth number, the accuracy of the tooth positioning method in this proposed study is 92.78%
Association of Female Menopause With Atrioventricular Mechanics and Outcomes
BACKGROUND: Despite known sex differences in cardiac structure and function, little is known about how menopause and estrogen associate with atrioventricular mechanics and outcomes. OBJECTIVE: To study how, sex differences, loss of estrogen in menopause and duration of menopause, relate to atrioventricular mechanics and outcomes. METHODS: Among 4051 asymptomatic adults (49.8 ± 10.8 years, 35%women), left ventricular (LV) and left atrial (LA) mechanics were assessed using speckle-tracking. RESULTS: Post-menopausal (vs. pre-menopausal) women had similar LV ejection fraction but reduced GLS, reduced PALS, increased LA stiffness, higher LV sphericity and LV torsion (all p < 0.001). Multivariable analysis showed menopause to be associated with greater LV sphericity (0.02, 95%CI 0.01, 0.03), higher indexed LV mass (LVMi), lower mitral eâ, lower LV GLS (0.37, 95%CI 0.04â0.70), higher LV torsion, larger LA volume, worse PALS (âŒ2.4-fold) and greater LA stiffness (0.028, 95%CI 0.01â0.05). Increasing years of menopause was associated with further reduction in GLS, markedly worse LA mechanics despite greater LV sphericity and higher torsion. Lower estradiol levels correlated with more impaired LV diastolic function, impaired LV GLS, greater LA stiffness, and increased LV sphericity and LV torsion (all p < 0.05). Approximately 5.5% (37/669) of post-menopausal women incident HF over 2.9 years of follow-up. Greater LV sphericity [adjusted hazard ratio (aHR) 1.04, 95%CI 1.00â1.07], impaired GLS (aHR 0.87, 95%CI 0.78â0.97), reduced peak left atrial longitudinal strain (PALS, aHR 0.94, 95%CI 0.90â0.99) and higher LA stiffness (aHR 10.5, 95%CI 1.69â64.6) were independently associated with the primary outcome of HF hospitalizations in post-menopause. Both PALS < 23% (aHR:1.32, 95%CI 1.01â3.49) and GLS < 16% (aHR:5.80, 95%CI 1.79â18.8) remained prognostic for the incidence of HF in post-menopausal women in dichotomous analyses, even after adjusting for confounders. Results were consistent with composite outcomes of HF hospitalizations and 1-year all-cause mortality as well. CONCLUSION: Menopause was associated with greater LV/LA remodeling and reduced LV longitudinal and LA function in women. The cardiac functional deficit with menopause and lower estradiol levels, along with their independent prognostic value post-menopause, may elucidate sex differences in heart failure further
Garlic Accelerates Red Blood Cell Turnover and Splenic Erythropoietic Gene Expression in Mice: Evidence for Erythropoietin-Independent Erythropoiesis
Garlic (Allium sativum) has been valued in many cultures both for its health effects and as a culinary flavor enhancer. Garlic's chemical complexity is widely thought to be the source of its many health benefits, which include, but are not limited to, anti-platelet, procirculatory, anti-inflammatory, anti-apoptotic, neuro-protective, and anti-cancer effects. While a growing body of scientific evidence strongly upholds the herb's broad and potent capacity to influence health, the common mechanisms underlying these diverse effects remain disjointed and relatively poorly understood. We adopted a phenotype-driven approach to investigate the effects of garlic in a mouse model. We examined RBC indices and morphologies, spleen histochemistry, RBC half-lives and gene expression profiles, followed up by qPCR and immunoblot validation. The RBCs of garlic-fed mice register shorter half-lives than the control. But they have normal blood chemistry and RBC indices. Their spleens manifest increased heme oxygenase 1, higher levels of iron and bilirubin, and presumably higher CO, a pleiotropic gasotransmitter. Heat shock genes and those critical for erythropoiesis are elevated in spleens but not in bone marrow. The garlic-fed mice have lower plasma erythropoietin than the controls, however. Chronic exposure to CO of mice on garlic-free diet was sufficient to cause increased RBC indices but again with a lower plasma erythropoietin level than air-treated controls. Furthermore, dietary garlic supplementation and CO treatment showed additive effects on reducing plasma erythropoietin levels in mice. Thus, garlic consumption not only causes increased energy demand from the faster RBC turnover but also increases the production of CO, which in turn stimulates splenic erythropoiesis by an erythropoietin-independent mechanism, thus completing the sequence of feedback regulation for RBC metabolism. Being a pleiotropic gasotransmitter, CO may be a second messenger for garlic's other physiological effects
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
The Response of UV/Blue Light and Ozone Sensing Using Ag-TiO2 Planar Nanocomposite Thin Film
We successfully fabricated a planar nanocomposite film that uses a composite of silver nanoparticles and titanium dioxide film (Ag-TiO2) for ultraviolet (UV) and blue light detection and application in ozone gas sensor. Ultraviolet-visible spectra revealed that silver nanoparticles have a strong surface plasmon resonance (SPR) effect. A strong redshift of the plasmonic peak when the silver nanoparticles covered the TiO2 thin film was observed. The value of conductivity change for the Ag-TiO2 composite is 4â8 times greater than that of TiO2 film under UV and blue light irradiation. The Ag-TiO2 nanocomposite film successfully sensed 100 ppb ozone. The gas response of the composite film increased by roughly six and four times under UV and blue light irradiation, respectively. We demonstrated that a Ag-TiO2 composite gas sensor can be used with visible light (blue). The planar composite significantly enhances photo catalysis. The composite films have practical application potential for wearable devices
The Response of UV/Blue Light and Ozone Sensing Using Ag-TiO2 Planar Nanocomposite Thin Film
We successfully fabricated a planar nanocomposite film that uses a composite of silver nanoparticles and titanium dioxide film (Ag-TiO2) for ultraviolet (UV) and blue light detection and application in ozone gas sensor. Ultraviolet-visible spectra revealed that silver nanoparticles have a strong surface plasmon resonance (SPR) effect. A strong redshift of the plasmonic peak when the silver nanoparticles covered the TiO2 thin film was observed. The value of conductivity change for the Ag-TiO2 composite is 4â8 times greater than that of TiO2 film under UV and blue light irradiation. The Ag-TiO2 nanocomposite film successfully sensed 100 ppb ozone. The gas response of the composite film increased by roughly six and four times under UV and blue light irradiation, respectively. We demonstrated that a Ag-TiO2 composite gas sensor can be used with visible light (blue). The planar composite significantly enhances photo catalysis. The composite films have practical application potential for wearable devices
Periocular Infection of Mycobacterium avium Complex in a Patient with Interferon-γ Autoantibodies: A Case Report
The neutralizing anti-interferon-γ autoantibody (nAIGA)-associated immunodeficiency is an emerging entity frequently associated with the nontuberculosis mycobacterium (NTM) infection and other opportunistic infections. We present a female patient with a mysterious periocular Mycobacterium avium complex (MAC) infection, accompanied by sequential opportunistic infections including Salmollelosis and herpes zoster infection. Her condition stabilized after long-term antimycobacterial treatment. Nevertheless, neutralizing anti-interferon-γ autoantibody was found in her serum, which was compatible with the scenario of adult-onset immunodeficiency
Microstructure of Butt Joint of High-Silicon Steel Made Using CO2 Laser Welding and Inconel 82 Filler
A nickel-based filler wire, Inconel 82, was applied to weld a high-silicon steel plate with a chemical composition in wt% of 2.6 Si, 0.5 Al and Fe balance. The chemical composition of the heterogeneous weld bead was deviated from that of the conventional alloy due to incomplete mixing/convection between the filler wire and base metal in the weld pool. The microstructure of the weld bead was examined in greater depth by FESEM/EBSD, EPMA/WDS and STEM/EDS in the experiment. The heterogeneous weld bead was primarily composed of austenite and martensite, and mainly governed by the Ni concentration. A Schaeffler diagram based on the ratio of Cr and Ni equivalents in the selected positions of the weld bead was used to predict the structure and phase(s) of the Fe-based weld bead. A methodology for the analysis of a weld metal with an unconventional alloy composition has been proposed in the study
- âŠ